mirror of
https://github.com/hypervortex/VH-Bombsquad-Modded-Server-Files
synced 2025-11-07 17:36:08 +00:00
Delete dist directory
This commit is contained in:
parent
2e2c838750
commit
867634cc5c
1779 changed files with 0 additions and 565850 deletions
|
|
@ -1,90 +0,0 @@
|
|||
# while we don't use six in this file, we did bundle it for a long time, so
|
||||
# keep as part of module in a virtual way (through __all__)
|
||||
import six
|
||||
from .keys import (
|
||||
SigningKey,
|
||||
VerifyingKey,
|
||||
BadSignatureError,
|
||||
BadDigestError,
|
||||
MalformedPointError,
|
||||
)
|
||||
from .curves import (
|
||||
NIST192p,
|
||||
NIST224p,
|
||||
NIST256p,
|
||||
NIST384p,
|
||||
NIST521p,
|
||||
SECP256k1,
|
||||
BRAINPOOLP160r1,
|
||||
BRAINPOOLP192r1,
|
||||
BRAINPOOLP224r1,
|
||||
BRAINPOOLP256r1,
|
||||
BRAINPOOLP320r1,
|
||||
BRAINPOOLP384r1,
|
||||
BRAINPOOLP512r1,
|
||||
SECP112r1,
|
||||
SECP112r2,
|
||||
SECP128r1,
|
||||
SECP160r1,
|
||||
Ed25519,
|
||||
Ed448,
|
||||
)
|
||||
from .ecdh import (
|
||||
ECDH,
|
||||
NoKeyError,
|
||||
NoCurveError,
|
||||
InvalidCurveError,
|
||||
InvalidSharedSecretError,
|
||||
)
|
||||
from .der import UnexpectedDER
|
||||
from . import _version
|
||||
|
||||
# This code comes from http://github.com/tlsfuzzer/python-ecdsa
|
||||
__all__ = [
|
||||
"curves",
|
||||
"der",
|
||||
"ecdsa",
|
||||
"ellipticcurve",
|
||||
"keys",
|
||||
"numbertheory",
|
||||
"test_pyecdsa",
|
||||
"util",
|
||||
"six",
|
||||
]
|
||||
|
||||
_hush_pyflakes = [
|
||||
SigningKey,
|
||||
VerifyingKey,
|
||||
BadSignatureError,
|
||||
BadDigestError,
|
||||
MalformedPointError,
|
||||
UnexpectedDER,
|
||||
InvalidCurveError,
|
||||
NoKeyError,
|
||||
InvalidSharedSecretError,
|
||||
ECDH,
|
||||
NoCurveError,
|
||||
NIST192p,
|
||||
NIST224p,
|
||||
NIST256p,
|
||||
NIST384p,
|
||||
NIST521p,
|
||||
SECP256k1,
|
||||
BRAINPOOLP160r1,
|
||||
BRAINPOOLP192r1,
|
||||
BRAINPOOLP224r1,
|
||||
BRAINPOOLP256r1,
|
||||
BRAINPOOLP320r1,
|
||||
BRAINPOOLP384r1,
|
||||
BRAINPOOLP512r1,
|
||||
SECP112r1,
|
||||
SECP112r2,
|
||||
SECP128r1,
|
||||
SECP160r1,
|
||||
Ed25519,
|
||||
Ed448,
|
||||
six.b(""),
|
||||
]
|
||||
del _hush_pyflakes
|
||||
|
||||
__version__ = _version.get_versions()["version"]
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
153
dist/ba_data/python-site-packages/ecdsa/_compat.py
vendored
153
dist/ba_data/python-site-packages/ecdsa/_compat.py
vendored
|
|
@ -1,153 +0,0 @@
|
|||
"""
|
||||
Common functions for providing cross-python version compatibility.
|
||||
"""
|
||||
import sys
|
||||
import re
|
||||
import binascii
|
||||
from six import integer_types
|
||||
|
||||
|
||||
def str_idx_as_int(string, index):
|
||||
"""Take index'th byte from string, return as integer"""
|
||||
val = string[index]
|
||||
if isinstance(val, integer_types):
|
||||
return val
|
||||
return ord(val)
|
||||
|
||||
|
||||
if sys.version_info < (3, 0): # pragma: no branch
|
||||
import platform
|
||||
|
||||
def normalise_bytes(buffer_object):
|
||||
"""Cast the input into array of bytes."""
|
||||
# flake8 runs on py3 where `buffer` indeed doesn't exist...
|
||||
return buffer(buffer_object) # noqa: F821
|
||||
|
||||
def hmac_compat(ret):
|
||||
return ret
|
||||
|
||||
if (
|
||||
sys.version_info < (2, 7)
|
||||
or sys.version_info < (2, 7, 4)
|
||||
or platform.system() == "Java"
|
||||
): # pragma: no branch
|
||||
|
||||
def remove_whitespace(text):
|
||||
"""Removes all whitespace from passed in string"""
|
||||
return re.sub(r"\s+", "", text)
|
||||
|
||||
def compat26_str(val):
|
||||
return str(val)
|
||||
|
||||
def bit_length(val):
|
||||
if val == 0:
|
||||
return 0
|
||||
return len(bin(val)) - 2
|
||||
|
||||
else:
|
||||
|
||||
def remove_whitespace(text):
|
||||
"""Removes all whitespace from passed in string"""
|
||||
return re.sub(r"\s+", "", text, flags=re.UNICODE)
|
||||
|
||||
def compat26_str(val):
|
||||
return val
|
||||
|
||||
def bit_length(val):
|
||||
"""Return number of bits necessary to represent an integer."""
|
||||
return val.bit_length()
|
||||
|
||||
def b2a_hex(val):
|
||||
return binascii.b2a_hex(compat26_str(val))
|
||||
|
||||
def a2b_hex(val):
|
||||
try:
|
||||
return bytearray(binascii.a2b_hex(val))
|
||||
except Exception as e:
|
||||
raise ValueError("base16 error: %s" % e)
|
||||
|
||||
def bytes_to_int(val, byteorder):
|
||||
"""Convert bytes to an int."""
|
||||
if not val:
|
||||
return 0
|
||||
if byteorder == "big":
|
||||
return int(b2a_hex(val), 16)
|
||||
if byteorder == "little":
|
||||
return int(b2a_hex(val[::-1]), 16)
|
||||
raise ValueError("Only 'big' and 'little' endian supported")
|
||||
|
||||
def int_to_bytes(val, length=None, byteorder="big"):
|
||||
"""Return number converted to bytes"""
|
||||
if length is None:
|
||||
length = byte_length(val)
|
||||
if byteorder == "big":
|
||||
return bytearray(
|
||||
(val >> i) & 0xFF for i in reversed(range(0, length * 8, 8))
|
||||
)
|
||||
if byteorder == "little":
|
||||
return bytearray(
|
||||
(val >> i) & 0xFF for i in range(0, length * 8, 8)
|
||||
)
|
||||
raise ValueError("Only 'big' or 'little' endian supported")
|
||||
|
||||
else:
|
||||
if sys.version_info < (3, 4): # pragma: no branch
|
||||
# on python 3.3 hmac.hmac.update() accepts only bytes, on newer
|
||||
# versions it does accept memoryview() also
|
||||
def hmac_compat(data):
|
||||
if not isinstance(data, bytes): # pragma: no branch
|
||||
return bytes(data)
|
||||
return data
|
||||
|
||||
def normalise_bytes(buffer_object):
|
||||
"""Cast the input into array of bytes."""
|
||||
if not buffer_object:
|
||||
return b""
|
||||
return memoryview(buffer_object).cast("B")
|
||||
|
||||
else:
|
||||
|
||||
def hmac_compat(data):
|
||||
return data
|
||||
|
||||
def normalise_bytes(buffer_object):
|
||||
"""Cast the input into array of bytes."""
|
||||
return memoryview(buffer_object).cast("B")
|
||||
|
||||
def compat26_str(val):
|
||||
return val
|
||||
|
||||
def remove_whitespace(text):
|
||||
"""Removes all whitespace from passed in string"""
|
||||
return re.sub(r"\s+", "", text, flags=re.UNICODE)
|
||||
|
||||
def a2b_hex(val):
|
||||
try:
|
||||
return bytearray(binascii.a2b_hex(bytearray(val, "ascii")))
|
||||
except Exception as e:
|
||||
raise ValueError("base16 error: %s" % e)
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
# pylint is stupid here and doesn't notice it's a function, not
|
||||
# constant
|
||||
bytes_to_int = int.from_bytes
|
||||
# pylint: enable=invalid-name
|
||||
|
||||
def bit_length(val):
|
||||
"""Return number of bits necessary to represent an integer."""
|
||||
return val.bit_length()
|
||||
|
||||
def int_to_bytes(val, length=None, byteorder="big"):
|
||||
"""Convert integer to bytes."""
|
||||
if length is None:
|
||||
length = byte_length(val)
|
||||
# for gmpy we need to convert back to native int
|
||||
if type(val) != int:
|
||||
val = int(val)
|
||||
return bytearray(val.to_bytes(length=length, byteorder=byteorder))
|
||||
|
||||
|
||||
def byte_length(val):
|
||||
"""Return number of bytes necessary to represent an integer."""
|
||||
length = bit_length(val)
|
||||
return (length + 7) // 8
|
||||
|
|
@ -1,86 +0,0 @@
|
|||
# Copyright Mateusz Kobos, (c) 2011
|
||||
# https://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/
|
||||
# released under the MIT licence
|
||||
|
||||
import threading
|
||||
|
||||
|
||||
__author__ = "Mateusz Kobos"
|
||||
|
||||
|
||||
class RWLock:
|
||||
"""
|
||||
Read-Write locking primitive
|
||||
|
||||
Synchronization object used in a solution of so-called second
|
||||
readers-writers problem. In this problem, many readers can simultaneously
|
||||
access a share, and a writer has an exclusive access to this share.
|
||||
Additionally, the following constraints should be met:
|
||||
1) no reader should be kept waiting if the share is currently opened for
|
||||
reading unless a writer is also waiting for the share,
|
||||
2) no writer should be kept waiting for the share longer than absolutely
|
||||
necessary.
|
||||
|
||||
The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7]
|
||||
with a modification -- adding an additional lock (C{self.__readers_queue})
|
||||
-- in accordance with [2].
|
||||
|
||||
Sources:
|
||||
[1] A.B. Downey: "The little book of semaphores", Version 2.1.5, 2008
|
||||
[2] P.J. Courtois, F. Heymans, D.L. Parnas:
|
||||
"Concurrent Control with 'Readers' and 'Writers'",
|
||||
Communications of the ACM, 1971 (via [3])
|
||||
[3] http://en.wikipedia.org/wiki/Readers-writers_problem
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
A lock giving an even higher priority to the writer in certain
|
||||
cases (see [2] for a discussion).
|
||||
"""
|
||||
self.__read_switch = _LightSwitch()
|
||||
self.__write_switch = _LightSwitch()
|
||||
self.__no_readers = threading.Lock()
|
||||
self.__no_writers = threading.Lock()
|
||||
self.__readers_queue = threading.Lock()
|
||||
|
||||
def reader_acquire(self):
|
||||
self.__readers_queue.acquire()
|
||||
self.__no_readers.acquire()
|
||||
self.__read_switch.acquire(self.__no_writers)
|
||||
self.__no_readers.release()
|
||||
self.__readers_queue.release()
|
||||
|
||||
def reader_release(self):
|
||||
self.__read_switch.release(self.__no_writers)
|
||||
|
||||
def writer_acquire(self):
|
||||
self.__write_switch.acquire(self.__no_readers)
|
||||
self.__no_writers.acquire()
|
||||
|
||||
def writer_release(self):
|
||||
self.__no_writers.release()
|
||||
self.__write_switch.release(self.__no_readers)
|
||||
|
||||
|
||||
class _LightSwitch:
|
||||
"""An auxiliary "light switch"-like object. The first thread turns on the
|
||||
"switch", the last one turns it off (see [1, sec. 4.2.2] for details)."""
|
||||
|
||||
def __init__(self):
|
||||
self.__counter = 0
|
||||
self.__mutex = threading.Lock()
|
||||
|
||||
def acquire(self, lock):
|
||||
self.__mutex.acquire()
|
||||
self.__counter += 1
|
||||
if self.__counter == 1:
|
||||
lock.acquire()
|
||||
self.__mutex.release()
|
||||
|
||||
def release(self, lock):
|
||||
self.__mutex.acquire()
|
||||
self.__counter -= 1
|
||||
if self.__counter == 0:
|
||||
lock.release()
|
||||
self.__mutex.release()
|
||||
181
dist/ba_data/python-site-packages/ecdsa/_sha3.py
vendored
181
dist/ba_data/python-site-packages/ecdsa/_sha3.py
vendored
|
|
@ -1,181 +0,0 @@
|
|||
"""
|
||||
Implementation of the SHAKE-256 algorithm for Ed448
|
||||
"""
|
||||
|
||||
try:
|
||||
import hashlib
|
||||
|
||||
hashlib.new("shake256").digest(64)
|
||||
|
||||
def shake_256(msg, outlen):
|
||||
return hashlib.new("shake256", msg).digest(outlen)
|
||||
|
||||
except (TypeError, ValueError):
|
||||
|
||||
from ._compat import bytes_to_int, int_to_bytes
|
||||
|
||||
# From little endian.
|
||||
def _from_le(s):
|
||||
return bytes_to_int(s, byteorder="little")
|
||||
|
||||
# Rotate a word x by b places to the left.
|
||||
def _rol(x, b):
|
||||
return ((x << b) | (x >> (64 - b))) & (2**64 - 1)
|
||||
|
||||
# Do the SHA-3 state transform on state s.
|
||||
def _sha3_transform(s):
|
||||
ROTATIONS = [
|
||||
0,
|
||||
1,
|
||||
62,
|
||||
28,
|
||||
27,
|
||||
36,
|
||||
44,
|
||||
6,
|
||||
55,
|
||||
20,
|
||||
3,
|
||||
10,
|
||||
43,
|
||||
25,
|
||||
39,
|
||||
41,
|
||||
45,
|
||||
15,
|
||||
21,
|
||||
8,
|
||||
18,
|
||||
2,
|
||||
61,
|
||||
56,
|
||||
14,
|
||||
]
|
||||
PERMUTATION = [
|
||||
1,
|
||||
6,
|
||||
9,
|
||||
22,
|
||||
14,
|
||||
20,
|
||||
2,
|
||||
12,
|
||||
13,
|
||||
19,
|
||||
23,
|
||||
15,
|
||||
4,
|
||||
24,
|
||||
21,
|
||||
8,
|
||||
16,
|
||||
5,
|
||||
3,
|
||||
18,
|
||||
17,
|
||||
11,
|
||||
7,
|
||||
10,
|
||||
]
|
||||
RC = [
|
||||
0x0000000000000001,
|
||||
0x0000000000008082,
|
||||
0x800000000000808A,
|
||||
0x8000000080008000,
|
||||
0x000000000000808B,
|
||||
0x0000000080000001,
|
||||
0x8000000080008081,
|
||||
0x8000000000008009,
|
||||
0x000000000000008A,
|
||||
0x0000000000000088,
|
||||
0x0000000080008009,
|
||||
0x000000008000000A,
|
||||
0x000000008000808B,
|
||||
0x800000000000008B,
|
||||
0x8000000000008089,
|
||||
0x8000000000008003,
|
||||
0x8000000000008002,
|
||||
0x8000000000000080,
|
||||
0x000000000000800A,
|
||||
0x800000008000000A,
|
||||
0x8000000080008081,
|
||||
0x8000000000008080,
|
||||
0x0000000080000001,
|
||||
0x8000000080008008,
|
||||
]
|
||||
|
||||
for rnd in range(0, 24):
|
||||
# AddColumnParity (Theta)
|
||||
c = [0] * 5
|
||||
d = [0] * 5
|
||||
for i in range(0, 25):
|
||||
c[i % 5] ^= s[i]
|
||||
for i in range(0, 5):
|
||||
d[i] = c[(i + 4) % 5] ^ _rol(c[(i + 1) % 5], 1)
|
||||
for i in range(0, 25):
|
||||
s[i] ^= d[i % 5]
|
||||
# RotateWords (Rho)
|
||||
for i in range(0, 25):
|
||||
s[i] = _rol(s[i], ROTATIONS[i])
|
||||
# PermuteWords (Pi)
|
||||
t = s[PERMUTATION[0]]
|
||||
for i in range(0, len(PERMUTATION) - 1):
|
||||
s[PERMUTATION[i]] = s[PERMUTATION[i + 1]]
|
||||
s[PERMUTATION[-1]] = t
|
||||
# NonlinearMixRows (Chi)
|
||||
for i in range(0, 25, 5):
|
||||
t = [
|
||||
s[i],
|
||||
s[i + 1],
|
||||
s[i + 2],
|
||||
s[i + 3],
|
||||
s[i + 4],
|
||||
s[i],
|
||||
s[i + 1],
|
||||
]
|
||||
for j in range(0, 5):
|
||||
s[i + j] = t[j] ^ ((~t[j + 1]) & (t[j + 2]))
|
||||
# AddRoundConstant (Iota)
|
||||
s[0] ^= RC[rnd]
|
||||
|
||||
# Reinterpret octet array b to word array and XOR it to state s.
|
||||
def _reinterpret_to_words_and_xor(s, b):
|
||||
for j in range(0, len(b) // 8):
|
||||
s[j] ^= _from_le(b[8 * j : 8 * j + 8])
|
||||
|
||||
# Reinterpret word array w to octet array and return it.
|
||||
def _reinterpret_to_octets(w):
|
||||
mp = bytearray()
|
||||
for j in range(0, len(w)):
|
||||
mp += int_to_bytes(w[j], 8, byteorder="little")
|
||||
return mp
|
||||
|
||||
def _sha3_raw(msg, r_w, o_p, e_b):
|
||||
"""Semi-generic SHA-3 implementation"""
|
||||
r_b = 8 * r_w
|
||||
s = [0] * 25
|
||||
# Handle whole blocks.
|
||||
idx = 0
|
||||
blocks = len(msg) // r_b
|
||||
for i in range(0, blocks):
|
||||
_reinterpret_to_words_and_xor(s, msg[idx : idx + r_b])
|
||||
idx += r_b
|
||||
_sha3_transform(s)
|
||||
# Handle last block padding.
|
||||
m = bytearray(msg[idx:])
|
||||
m.append(o_p)
|
||||
while len(m) < r_b:
|
||||
m.append(0)
|
||||
m[len(m) - 1] |= 128
|
||||
# Handle padded last block.
|
||||
_reinterpret_to_words_and_xor(s, m)
|
||||
_sha3_transform(s)
|
||||
# Output.
|
||||
out = bytearray()
|
||||
while len(out) < e_b:
|
||||
out += _reinterpret_to_octets(s[:r_w])
|
||||
_sha3_transform(s)
|
||||
return out[:e_b]
|
||||
|
||||
def shake_256(msg, outlen):
|
||||
return _sha3_raw(msg, 17, 31, outlen)
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
|
||||
# This file was generated by 'versioneer.py' (0.21) from
|
||||
# revision-control system data, or from the parent directory name of an
|
||||
# unpacked source archive. Distribution tarballs contain a pre-generated copy
|
||||
# of this file.
|
||||
|
||||
import json
|
||||
|
||||
version_json = '''
|
||||
{
|
||||
"date": "2022-07-09T14:49:17+0200",
|
||||
"dirty": false,
|
||||
"error": null,
|
||||
"full-revisionid": "341e0d8be9fedf66fbc9a95630b4ed2138343380",
|
||||
"version": "0.18.0"
|
||||
}
|
||||
''' # END VERSION_JSON
|
||||
|
||||
|
||||
def get_versions():
|
||||
return json.loads(version_json)
|
||||
513
dist/ba_data/python-site-packages/ecdsa/curves.py
vendored
513
dist/ba_data/python-site-packages/ecdsa/curves.py
vendored
|
|
@ -1,513 +0,0 @@
|
|||
from __future__ import division
|
||||
|
||||
from six import PY2
|
||||
from . import der, ecdsa, ellipticcurve, eddsa
|
||||
from .util import orderlen, number_to_string, string_to_number
|
||||
from ._compat import normalise_bytes, bit_length
|
||||
|
||||
|
||||
# orderlen was defined in this module previously, so keep it in __all__,
|
||||
# will need to mark it as deprecated later
|
||||
__all__ = [
|
||||
"UnknownCurveError",
|
||||
"orderlen",
|
||||
"Curve",
|
||||
"SECP112r1",
|
||||
"SECP112r2",
|
||||
"SECP128r1",
|
||||
"SECP160r1",
|
||||
"NIST192p",
|
||||
"NIST224p",
|
||||
"NIST256p",
|
||||
"NIST384p",
|
||||
"NIST521p",
|
||||
"curves",
|
||||
"find_curve",
|
||||
"curve_by_name",
|
||||
"SECP256k1",
|
||||
"BRAINPOOLP160r1",
|
||||
"BRAINPOOLP192r1",
|
||||
"BRAINPOOLP224r1",
|
||||
"BRAINPOOLP256r1",
|
||||
"BRAINPOOLP320r1",
|
||||
"BRAINPOOLP384r1",
|
||||
"BRAINPOOLP512r1",
|
||||
"PRIME_FIELD_OID",
|
||||
"CHARACTERISTIC_TWO_FIELD_OID",
|
||||
"Ed25519",
|
||||
"Ed448",
|
||||
]
|
||||
|
||||
|
||||
PRIME_FIELD_OID = (1, 2, 840, 10045, 1, 1)
|
||||
CHARACTERISTIC_TWO_FIELD_OID = (1, 2, 840, 10045, 1, 2)
|
||||
|
||||
|
||||
class UnknownCurveError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class Curve:
|
||||
def __init__(self, name, curve, generator, oid, openssl_name=None):
|
||||
self.name = name
|
||||
self.openssl_name = openssl_name # maybe None
|
||||
self.curve = curve
|
||||
self.generator = generator
|
||||
self.order = generator.order()
|
||||
if isinstance(curve, ellipticcurve.CurveEdTw):
|
||||
# EdDSA keys are special in that both private and public
|
||||
# are the same size (as it's defined only with compressed points)
|
||||
|
||||
# +1 for the sign bit and then round up
|
||||
self.baselen = (bit_length(curve.p()) + 1 + 7) // 8
|
||||
self.verifying_key_length = self.baselen
|
||||
else:
|
||||
self.baselen = orderlen(self.order)
|
||||
self.verifying_key_length = 2 * orderlen(curve.p())
|
||||
self.signature_length = 2 * self.baselen
|
||||
self.oid = oid
|
||||
if oid:
|
||||
self.encoded_oid = der.encode_oid(*oid)
|
||||
|
||||
def __eq__(self, other):
|
||||
if isinstance(other, Curve):
|
||||
return (
|
||||
self.curve == other.curve and self.generator == other.generator
|
||||
)
|
||||
return NotImplemented
|
||||
|
||||
def __ne__(self, other):
|
||||
return not self == other
|
||||
|
||||
def __repr__(self):
|
||||
return self.name
|
||||
|
||||
def to_der(self, encoding=None, point_encoding="uncompressed"):
|
||||
"""Serialise the curve parameters to binary string.
|
||||
|
||||
:param str encoding: the format to save the curve parameters in.
|
||||
Default is ``named_curve``, with fallback being the ``explicit``
|
||||
if the OID is not set for the curve.
|
||||
:param str point_encoding: the point encoding of the generator when
|
||||
explicit curve encoding is used. Ignored for ``named_curve``
|
||||
format.
|
||||
|
||||
:return: DER encoded ECParameters structure
|
||||
:rtype: bytes
|
||||
"""
|
||||
if encoding is None:
|
||||
if self.oid:
|
||||
encoding = "named_curve"
|
||||
else:
|
||||
encoding = "explicit"
|
||||
|
||||
if encoding not in ("named_curve", "explicit"):
|
||||
raise ValueError(
|
||||
"Only 'named_curve' and 'explicit' encodings supported"
|
||||
)
|
||||
|
||||
if encoding == "named_curve":
|
||||
if not self.oid:
|
||||
raise UnknownCurveError(
|
||||
"Can't encode curve using named_curve encoding without "
|
||||
"associated curve OID"
|
||||
)
|
||||
return der.encode_oid(*self.oid)
|
||||
elif isinstance(self.curve, ellipticcurve.CurveEdTw):
|
||||
assert encoding == "explicit"
|
||||
raise UnknownCurveError(
|
||||
"Twisted Edwards curves don't support explicit encoding"
|
||||
)
|
||||
|
||||
# encode the ECParameters sequence
|
||||
curve_p = self.curve.p()
|
||||
version = der.encode_integer(1)
|
||||
field_id = der.encode_sequence(
|
||||
der.encode_oid(*PRIME_FIELD_OID), der.encode_integer(curve_p)
|
||||
)
|
||||
curve = der.encode_sequence(
|
||||
der.encode_octet_string(
|
||||
number_to_string(self.curve.a() % curve_p, curve_p)
|
||||
),
|
||||
der.encode_octet_string(
|
||||
number_to_string(self.curve.b() % curve_p, curve_p)
|
||||
),
|
||||
)
|
||||
base = der.encode_octet_string(self.generator.to_bytes(point_encoding))
|
||||
order = der.encode_integer(self.generator.order())
|
||||
seq_elements = [version, field_id, curve, base, order]
|
||||
if self.curve.cofactor():
|
||||
cofactor = der.encode_integer(self.curve.cofactor())
|
||||
seq_elements.append(cofactor)
|
||||
|
||||
return der.encode_sequence(*seq_elements)
|
||||
|
||||
def to_pem(self, encoding=None, point_encoding="uncompressed"):
|
||||
"""
|
||||
Serialise the curve parameters to the :term:`PEM` format.
|
||||
|
||||
:param str encoding: the format to save the curve parameters in.
|
||||
Default is ``named_curve``, with fallback being the ``explicit``
|
||||
if the OID is not set for the curve.
|
||||
:param str point_encoding: the point encoding of the generator when
|
||||
explicit curve encoding is used. Ignored for ``named_curve``
|
||||
format.
|
||||
|
||||
:return: PEM encoded ECParameters structure
|
||||
:rtype: str
|
||||
"""
|
||||
return der.topem(
|
||||
self.to_der(encoding, point_encoding), "EC PARAMETERS"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_der(data, valid_encodings=None):
|
||||
"""Decode the curve parameters from DER file.
|
||||
|
||||
:param data: the binary string to decode the parameters from
|
||||
:type data: :term:`bytes-like object`
|
||||
:param valid_encodings: set of names of allowed encodings, by default
|
||||
all (set by passing ``None``), supported ones are ``named_curve``
|
||||
and ``explicit``
|
||||
:type valid_encodings: :term:`set-like object`
|
||||
"""
|
||||
if not valid_encodings:
|
||||
valid_encodings = set(("named_curve", "explicit"))
|
||||
if not all(i in ["named_curve", "explicit"] for i in valid_encodings):
|
||||
raise ValueError(
|
||||
"Only named_curve and explicit encodings supported"
|
||||
)
|
||||
data = normalise_bytes(data)
|
||||
if not der.is_sequence(data):
|
||||
if "named_curve" not in valid_encodings:
|
||||
raise der.UnexpectedDER(
|
||||
"named_curve curve parameters not allowed"
|
||||
)
|
||||
oid, empty = der.remove_object(data)
|
||||
if empty:
|
||||
raise der.UnexpectedDER("Unexpected data after OID")
|
||||
return find_curve(oid)
|
||||
|
||||
if "explicit" not in valid_encodings:
|
||||
raise der.UnexpectedDER("explicit curve parameters not allowed")
|
||||
|
||||
seq, empty = der.remove_sequence(data)
|
||||
if empty:
|
||||
raise der.UnexpectedDER(
|
||||
"Unexpected data after ECParameters structure"
|
||||
)
|
||||
# decode the ECParameters sequence
|
||||
version, rest = der.remove_integer(seq)
|
||||
if version != 1:
|
||||
raise der.UnexpectedDER("Unknown parameter encoding format")
|
||||
field_id, rest = der.remove_sequence(rest)
|
||||
curve, rest = der.remove_sequence(rest)
|
||||
base_bytes, rest = der.remove_octet_string(rest)
|
||||
order, rest = der.remove_integer(rest)
|
||||
cofactor = None
|
||||
if rest:
|
||||
# the ASN.1 specification of ECParameters allows for future
|
||||
# extensions of the sequence, so ignore the remaining bytes
|
||||
cofactor, _ = der.remove_integer(rest)
|
||||
|
||||
# decode the ECParameters.fieldID sequence
|
||||
field_type, rest = der.remove_object(field_id)
|
||||
if field_type == CHARACTERISTIC_TWO_FIELD_OID:
|
||||
raise UnknownCurveError("Characteristic 2 curves unsupported")
|
||||
if field_type != PRIME_FIELD_OID:
|
||||
raise UnknownCurveError(
|
||||
"Unknown field type: {0}".format(field_type)
|
||||
)
|
||||
prime, empty = der.remove_integer(rest)
|
||||
if empty:
|
||||
raise der.UnexpectedDER(
|
||||
"Unexpected data after ECParameters.fieldID.Prime-p element"
|
||||
)
|
||||
|
||||
# decode the ECParameters.curve sequence
|
||||
curve_a_bytes, rest = der.remove_octet_string(curve)
|
||||
curve_b_bytes, rest = der.remove_octet_string(rest)
|
||||
# seed can be defined here, but we don't parse it, so ignore `rest`
|
||||
|
||||
curve_a = string_to_number(curve_a_bytes)
|
||||
curve_b = string_to_number(curve_b_bytes)
|
||||
|
||||
curve_fp = ellipticcurve.CurveFp(prime, curve_a, curve_b, cofactor)
|
||||
|
||||
# decode the ECParameters.base point
|
||||
|
||||
base = ellipticcurve.PointJacobi.from_bytes(
|
||||
curve_fp,
|
||||
base_bytes,
|
||||
valid_encodings=("uncompressed", "compressed", "hybrid"),
|
||||
order=order,
|
||||
generator=True,
|
||||
)
|
||||
tmp_curve = Curve("unknown", curve_fp, base, None)
|
||||
|
||||
# if the curve matches one of the well-known ones, use the well-known
|
||||
# one in preference, as it will have the OID and name associated
|
||||
for i in curves:
|
||||
if tmp_curve == i:
|
||||
return i
|
||||
return tmp_curve
|
||||
|
||||
@classmethod
|
||||
def from_pem(cls, string, valid_encodings=None):
|
||||
"""Decode the curve parameters from PEM file.
|
||||
|
||||
:param str string: the text string to decode the parameters from
|
||||
:param valid_encodings: set of names of allowed encodings, by default
|
||||
all (set by passing ``None``), supported ones are ``named_curve``
|
||||
and ``explicit``
|
||||
:type valid_encodings: :term:`set-like object`
|
||||
"""
|
||||
if not PY2 and isinstance(string, str): # pragma: no branch
|
||||
string = string.encode()
|
||||
|
||||
ec_param_index = string.find(b"-----BEGIN EC PARAMETERS-----")
|
||||
if ec_param_index == -1:
|
||||
raise der.UnexpectedDER("EC PARAMETERS PEM header not found")
|
||||
|
||||
return cls.from_der(
|
||||
der.unpem(string[ec_param_index:]), valid_encodings
|
||||
)
|
||||
|
||||
|
||||
# the SEC curves
|
||||
SECP112r1 = Curve(
|
||||
"SECP112r1",
|
||||
ecdsa.curve_112r1,
|
||||
ecdsa.generator_112r1,
|
||||
(1, 3, 132, 0, 6),
|
||||
"secp112r1",
|
||||
)
|
||||
|
||||
|
||||
SECP112r2 = Curve(
|
||||
"SECP112r2",
|
||||
ecdsa.curve_112r2,
|
||||
ecdsa.generator_112r2,
|
||||
(1, 3, 132, 0, 7),
|
||||
"secp112r2",
|
||||
)
|
||||
|
||||
|
||||
SECP128r1 = Curve(
|
||||
"SECP128r1",
|
||||
ecdsa.curve_128r1,
|
||||
ecdsa.generator_128r1,
|
||||
(1, 3, 132, 0, 28),
|
||||
"secp128r1",
|
||||
)
|
||||
|
||||
|
||||
SECP160r1 = Curve(
|
||||
"SECP160r1",
|
||||
ecdsa.curve_160r1,
|
||||
ecdsa.generator_160r1,
|
||||
(1, 3, 132, 0, 8),
|
||||
"secp160r1",
|
||||
)
|
||||
|
||||
|
||||
# the NIST curves
|
||||
NIST192p = Curve(
|
||||
"NIST192p",
|
||||
ecdsa.curve_192,
|
||||
ecdsa.generator_192,
|
||||
(1, 2, 840, 10045, 3, 1, 1),
|
||||
"prime192v1",
|
||||
)
|
||||
|
||||
|
||||
NIST224p = Curve(
|
||||
"NIST224p",
|
||||
ecdsa.curve_224,
|
||||
ecdsa.generator_224,
|
||||
(1, 3, 132, 0, 33),
|
||||
"secp224r1",
|
||||
)
|
||||
|
||||
|
||||
NIST256p = Curve(
|
||||
"NIST256p",
|
||||
ecdsa.curve_256,
|
||||
ecdsa.generator_256,
|
||||
(1, 2, 840, 10045, 3, 1, 7),
|
||||
"prime256v1",
|
||||
)
|
||||
|
||||
|
||||
NIST384p = Curve(
|
||||
"NIST384p",
|
||||
ecdsa.curve_384,
|
||||
ecdsa.generator_384,
|
||||
(1, 3, 132, 0, 34),
|
||||
"secp384r1",
|
||||
)
|
||||
|
||||
|
||||
NIST521p = Curve(
|
||||
"NIST521p",
|
||||
ecdsa.curve_521,
|
||||
ecdsa.generator_521,
|
||||
(1, 3, 132, 0, 35),
|
||||
"secp521r1",
|
||||
)
|
||||
|
||||
|
||||
SECP256k1 = Curve(
|
||||
"SECP256k1",
|
||||
ecdsa.curve_secp256k1,
|
||||
ecdsa.generator_secp256k1,
|
||||
(1, 3, 132, 0, 10),
|
||||
"secp256k1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP160r1 = Curve(
|
||||
"BRAINPOOLP160r1",
|
||||
ecdsa.curve_brainpoolp160r1,
|
||||
ecdsa.generator_brainpoolp160r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 1),
|
||||
"brainpoolP160r1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP192r1 = Curve(
|
||||
"BRAINPOOLP192r1",
|
||||
ecdsa.curve_brainpoolp192r1,
|
||||
ecdsa.generator_brainpoolp192r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 3),
|
||||
"brainpoolP192r1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP224r1 = Curve(
|
||||
"BRAINPOOLP224r1",
|
||||
ecdsa.curve_brainpoolp224r1,
|
||||
ecdsa.generator_brainpoolp224r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 5),
|
||||
"brainpoolP224r1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP256r1 = Curve(
|
||||
"BRAINPOOLP256r1",
|
||||
ecdsa.curve_brainpoolp256r1,
|
||||
ecdsa.generator_brainpoolp256r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 7),
|
||||
"brainpoolP256r1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP320r1 = Curve(
|
||||
"BRAINPOOLP320r1",
|
||||
ecdsa.curve_brainpoolp320r1,
|
||||
ecdsa.generator_brainpoolp320r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 9),
|
||||
"brainpoolP320r1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP384r1 = Curve(
|
||||
"BRAINPOOLP384r1",
|
||||
ecdsa.curve_brainpoolp384r1,
|
||||
ecdsa.generator_brainpoolp384r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 11),
|
||||
"brainpoolP384r1",
|
||||
)
|
||||
|
||||
|
||||
BRAINPOOLP512r1 = Curve(
|
||||
"BRAINPOOLP512r1",
|
||||
ecdsa.curve_brainpoolp512r1,
|
||||
ecdsa.generator_brainpoolp512r1,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 13),
|
||||
"brainpoolP512r1",
|
||||
)
|
||||
|
||||
|
||||
Ed25519 = Curve(
|
||||
"Ed25519",
|
||||
eddsa.curve_ed25519,
|
||||
eddsa.generator_ed25519,
|
||||
(1, 3, 101, 112),
|
||||
)
|
||||
|
||||
|
||||
Ed448 = Curve(
|
||||
"Ed448",
|
||||
eddsa.curve_ed448,
|
||||
eddsa.generator_ed448,
|
||||
(1, 3, 101, 113),
|
||||
)
|
||||
|
||||
|
||||
# no order in particular, but keep previously added curves first
|
||||
curves = [
|
||||
NIST192p,
|
||||
NIST224p,
|
||||
NIST256p,
|
||||
NIST384p,
|
||||
NIST521p,
|
||||
SECP256k1,
|
||||
BRAINPOOLP160r1,
|
||||
BRAINPOOLP192r1,
|
||||
BRAINPOOLP224r1,
|
||||
BRAINPOOLP256r1,
|
||||
BRAINPOOLP320r1,
|
||||
BRAINPOOLP384r1,
|
||||
BRAINPOOLP512r1,
|
||||
SECP112r1,
|
||||
SECP112r2,
|
||||
SECP128r1,
|
||||
SECP160r1,
|
||||
Ed25519,
|
||||
Ed448,
|
||||
]
|
||||
|
||||
|
||||
def find_curve(oid_curve):
|
||||
"""Select a curve based on its OID
|
||||
|
||||
:param tuple[int,...] oid_curve: ASN.1 Object Identifier of the
|
||||
curve to return, like ``(1, 2, 840, 10045, 3, 1, 7)`` for ``NIST256p``.
|
||||
|
||||
:raises UnknownCurveError: When the oid doesn't match any of the supported
|
||||
curves
|
||||
|
||||
:rtype: ~ecdsa.curves.Curve
|
||||
"""
|
||||
for c in curves:
|
||||
if c.oid == oid_curve:
|
||||
return c
|
||||
raise UnknownCurveError(
|
||||
"I don't know about the curve with oid %s."
|
||||
"I only know about these: %s" % (oid_curve, [c.name for c in curves])
|
||||
)
|
||||
|
||||
|
||||
def curve_by_name(name):
|
||||
"""Select a curve based on its name.
|
||||
|
||||
Returns a :py:class:`~ecdsa.curves.Curve` object with a ``name`` name.
|
||||
Note that ``name`` is case-sensitve.
|
||||
|
||||
:param str name: Name of the curve to return, like ``NIST256p`` or
|
||||
``prime256v1``
|
||||
|
||||
:raises UnknownCurveError: When the name doesn't match any of the supported
|
||||
curves
|
||||
|
||||
:rtype: ~ecdsa.curves.Curve
|
||||
"""
|
||||
for c in curves:
|
||||
if name == c.name or (c.openssl_name and name == c.openssl_name):
|
||||
return c
|
||||
raise UnknownCurveError(
|
||||
"Curve with name {0!r} unknown, only curves supported: {1}".format(
|
||||
name, [c.name for c in curves]
|
||||
)
|
||||
)
|
||||
409
dist/ba_data/python-site-packages/ecdsa/der.py
vendored
409
dist/ba_data/python-site-packages/ecdsa/der.py
vendored
|
|
@ -1,409 +0,0 @@
|
|||
from __future__ import division
|
||||
|
||||
import binascii
|
||||
import base64
|
||||
import warnings
|
||||
from itertools import chain
|
||||
from six import int2byte, b, text_type
|
||||
from ._compat import str_idx_as_int
|
||||
|
||||
|
||||
class UnexpectedDER(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def encode_constructed(tag, value):
|
||||
return int2byte(0xA0 + tag) + encode_length(len(value)) + value
|
||||
|
||||
|
||||
def encode_integer(r):
|
||||
assert r >= 0 # can't support negative numbers yet
|
||||
h = ("%x" % r).encode()
|
||||
if len(h) % 2:
|
||||
h = b("0") + h
|
||||
s = binascii.unhexlify(h)
|
||||
num = str_idx_as_int(s, 0)
|
||||
if num <= 0x7F:
|
||||
return b("\x02") + encode_length(len(s)) + s
|
||||
else:
|
||||
# DER integers are two's complement, so if the first byte is
|
||||
# 0x80-0xff then we need an extra 0x00 byte to prevent it from
|
||||
# looking negative.
|
||||
return b("\x02") + encode_length(len(s) + 1) + b("\x00") + s
|
||||
|
||||
|
||||
# sentry object to check if an argument was specified (used to detect
|
||||
# deprecated calling convention)
|
||||
_sentry = object()
|
||||
|
||||
|
||||
def encode_bitstring(s, unused=_sentry):
|
||||
"""
|
||||
Encode a binary string as a BIT STRING using :term:`DER` encoding.
|
||||
|
||||
Note, because there is no native Python object that can encode an actual
|
||||
bit string, this function only accepts byte strings as the `s` argument.
|
||||
The byte string is the actual bit string that will be encoded, padded
|
||||
on the right (least significant bits, looking from big endian perspective)
|
||||
to the first full byte. If the bit string has a bit length that is multiple
|
||||
of 8, then the padding should not be included. For correct DER encoding
|
||||
the padding bits MUST be set to 0.
|
||||
|
||||
Number of bits of padding need to be provided as the `unused` parameter.
|
||||
In case they are specified as None, it means the number of unused bits
|
||||
is already encoded in the string as the first byte.
|
||||
|
||||
The deprecated call convention specifies just the `s` parameters and
|
||||
encodes the number of unused bits as first parameter (same convention
|
||||
as with None).
|
||||
|
||||
Empty string must be encoded with `unused` specified as 0.
|
||||
|
||||
Future version of python-ecdsa will make specifying the `unused` argument
|
||||
mandatory.
|
||||
|
||||
:param s: bytes to encode
|
||||
:type s: bytes like object
|
||||
:param unused: number of bits at the end of `s` that are unused, must be
|
||||
between 0 and 7 (inclusive)
|
||||
:type unused: int or None
|
||||
|
||||
:raises ValueError: when `unused` is too large or too small
|
||||
|
||||
:return: `s` encoded using DER
|
||||
:rtype: bytes
|
||||
"""
|
||||
encoded_unused = b""
|
||||
len_extra = 0
|
||||
if unused is _sentry:
|
||||
warnings.warn(
|
||||
"Legacy call convention used, unused= needs to be specified",
|
||||
DeprecationWarning,
|
||||
)
|
||||
elif unused is not None:
|
||||
if not 0 <= unused <= 7:
|
||||
raise ValueError("unused must be integer between 0 and 7")
|
||||
if unused:
|
||||
if not s:
|
||||
raise ValueError("unused is non-zero but s is empty")
|
||||
last = str_idx_as_int(s, -1)
|
||||
if last & (2**unused - 1):
|
||||
raise ValueError("unused bits must be zeros in DER")
|
||||
encoded_unused = int2byte(unused)
|
||||
len_extra = 1
|
||||
return b("\x03") + encode_length(len(s) + len_extra) + encoded_unused + s
|
||||
|
||||
|
||||
def encode_octet_string(s):
|
||||
return b("\x04") + encode_length(len(s)) + s
|
||||
|
||||
|
||||
def encode_oid(first, second, *pieces):
|
||||
assert 0 <= first < 2 and 0 <= second <= 39 or first == 2 and 0 <= second
|
||||
body = b"".join(
|
||||
chain(
|
||||
[encode_number(40 * first + second)],
|
||||
(encode_number(p) for p in pieces),
|
||||
)
|
||||
)
|
||||
return b"\x06" + encode_length(len(body)) + body
|
||||
|
||||
|
||||
def encode_sequence(*encoded_pieces):
|
||||
total_len = sum([len(p) for p in encoded_pieces])
|
||||
return b("\x30") + encode_length(total_len) + b("").join(encoded_pieces)
|
||||
|
||||
|
||||
def encode_number(n):
|
||||
b128_digits = []
|
||||
while n:
|
||||
b128_digits.insert(0, (n & 0x7F) | 0x80)
|
||||
n = n >> 7
|
||||
if not b128_digits:
|
||||
b128_digits.append(0)
|
||||
b128_digits[-1] &= 0x7F
|
||||
return b("").join([int2byte(d) for d in b128_digits])
|
||||
|
||||
|
||||
def is_sequence(string):
|
||||
return string and string[:1] == b"\x30"
|
||||
|
||||
|
||||
def remove_constructed(string):
|
||||
s0 = str_idx_as_int(string, 0)
|
||||
if (s0 & 0xE0) != 0xA0:
|
||||
raise UnexpectedDER(
|
||||
"wanted type 'constructed tag' (0xa0-0xbf), got 0x%02x" % s0
|
||||
)
|
||||
tag = s0 & 0x1F
|
||||
length, llen = read_length(string[1:])
|
||||
body = string[1 + llen : 1 + llen + length]
|
||||
rest = string[1 + llen + length :]
|
||||
return tag, body, rest
|
||||
|
||||
|
||||
def remove_sequence(string):
|
||||
if not string:
|
||||
raise UnexpectedDER("Empty string does not encode a sequence")
|
||||
if string[:1] != b"\x30":
|
||||
n = str_idx_as_int(string, 0)
|
||||
raise UnexpectedDER("wanted type 'sequence' (0x30), got 0x%02x" % n)
|
||||
length, lengthlength = read_length(string[1:])
|
||||
if length > len(string) - 1 - lengthlength:
|
||||
raise UnexpectedDER("Length longer than the provided buffer")
|
||||
endseq = 1 + lengthlength + length
|
||||
return string[1 + lengthlength : endseq], string[endseq:]
|
||||
|
||||
|
||||
def remove_octet_string(string):
|
||||
if string[:1] != b"\x04":
|
||||
n = str_idx_as_int(string, 0)
|
||||
raise UnexpectedDER("wanted type 'octetstring' (0x04), got 0x%02x" % n)
|
||||
length, llen = read_length(string[1:])
|
||||
body = string[1 + llen : 1 + llen + length]
|
||||
rest = string[1 + llen + length :]
|
||||
return body, rest
|
||||
|
||||
|
||||
def remove_object(string):
|
||||
if not string:
|
||||
raise UnexpectedDER(
|
||||
"Empty string does not encode an object identifier"
|
||||
)
|
||||
if string[:1] != b"\x06":
|
||||
n = str_idx_as_int(string, 0)
|
||||
raise UnexpectedDER("wanted type 'object' (0x06), got 0x%02x" % n)
|
||||
length, lengthlength = read_length(string[1:])
|
||||
body = string[1 + lengthlength : 1 + lengthlength + length]
|
||||
rest = string[1 + lengthlength + length :]
|
||||
if not body:
|
||||
raise UnexpectedDER("Empty object identifier")
|
||||
if len(body) != length:
|
||||
raise UnexpectedDER(
|
||||
"Length of object identifier longer than the provided buffer"
|
||||
)
|
||||
numbers = []
|
||||
while body:
|
||||
n, ll = read_number(body)
|
||||
numbers.append(n)
|
||||
body = body[ll:]
|
||||
n0 = numbers.pop(0)
|
||||
if n0 < 80:
|
||||
first = n0 // 40
|
||||
else:
|
||||
first = 2
|
||||
second = n0 - (40 * first)
|
||||
numbers.insert(0, first)
|
||||
numbers.insert(1, second)
|
||||
return tuple(numbers), rest
|
||||
|
||||
|
||||
def remove_integer(string):
|
||||
if not string:
|
||||
raise UnexpectedDER(
|
||||
"Empty string is an invalid encoding of an integer"
|
||||
)
|
||||
if string[:1] != b"\x02":
|
||||
n = str_idx_as_int(string, 0)
|
||||
raise UnexpectedDER("wanted type 'integer' (0x02), got 0x%02x" % n)
|
||||
length, llen = read_length(string[1:])
|
||||
if length > len(string) - 1 - llen:
|
||||
raise UnexpectedDER("Length longer than provided buffer")
|
||||
if length == 0:
|
||||
raise UnexpectedDER("0-byte long encoding of integer")
|
||||
numberbytes = string[1 + llen : 1 + llen + length]
|
||||
rest = string[1 + llen + length :]
|
||||
msb = str_idx_as_int(numberbytes, 0)
|
||||
if not msb < 0x80:
|
||||
raise UnexpectedDER("Negative integers are not supported")
|
||||
# check if the encoding is the minimal one (DER requirement)
|
||||
if length > 1 and not msb:
|
||||
# leading zero byte is allowed if the integer would have been
|
||||
# considered a negative number otherwise
|
||||
smsb = str_idx_as_int(numberbytes, 1)
|
||||
if smsb < 0x80:
|
||||
raise UnexpectedDER(
|
||||
"Invalid encoding of integer, unnecessary "
|
||||
"zero padding bytes"
|
||||
)
|
||||
return int(binascii.hexlify(numberbytes), 16), rest
|
||||
|
||||
|
||||
def read_number(string):
|
||||
number = 0
|
||||
llen = 0
|
||||
if str_idx_as_int(string, 0) == 0x80:
|
||||
raise UnexpectedDER("Non minimal encoding of OID subidentifier")
|
||||
# base-128 big endian, with most significant bit set in all but the last
|
||||
# byte
|
||||
while True:
|
||||
if llen >= len(string):
|
||||
raise UnexpectedDER("ran out of length bytes")
|
||||
number = number << 7
|
||||
d = str_idx_as_int(string, llen)
|
||||
number += d & 0x7F
|
||||
llen += 1
|
||||
if not d & 0x80:
|
||||
break
|
||||
return number, llen
|
||||
|
||||
|
||||
def encode_length(l):
|
||||
assert l >= 0
|
||||
if l < 0x80:
|
||||
return int2byte(l)
|
||||
s = ("%x" % l).encode()
|
||||
if len(s) % 2:
|
||||
s = b("0") + s
|
||||
s = binascii.unhexlify(s)
|
||||
llen = len(s)
|
||||
return int2byte(0x80 | llen) + s
|
||||
|
||||
|
||||
def read_length(string):
|
||||
if not string:
|
||||
raise UnexpectedDER("Empty string can't encode valid length value")
|
||||
num = str_idx_as_int(string, 0)
|
||||
if not (num & 0x80):
|
||||
# short form
|
||||
return (num & 0x7F), 1
|
||||
# else long-form: b0&0x7f is number of additional base256 length bytes,
|
||||
# big-endian
|
||||
llen = num & 0x7F
|
||||
if not llen:
|
||||
raise UnexpectedDER("Invalid length encoding, length of length is 0")
|
||||
if llen > len(string) - 1:
|
||||
raise UnexpectedDER("Length of length longer than provided buffer")
|
||||
# verify that the encoding is minimal possible (DER requirement)
|
||||
msb = str_idx_as_int(string, 1)
|
||||
if not msb or llen == 1 and msb < 0x80:
|
||||
raise UnexpectedDER("Not minimal encoding of length")
|
||||
return int(binascii.hexlify(string[1 : 1 + llen]), 16), 1 + llen
|
||||
|
||||
|
||||
def remove_bitstring(string, expect_unused=_sentry):
|
||||
"""
|
||||
Remove a BIT STRING object from `string` following :term:`DER`.
|
||||
|
||||
The `expect_unused` can be used to specify if the bit string should
|
||||
have the amount of unused bits decoded or not. If it's an integer, any
|
||||
read BIT STRING that has number of unused bits different from specified
|
||||
value will cause UnexpectedDER exception to be raised (this is especially
|
||||
useful when decoding BIT STRINGS that have DER encoded object in them;
|
||||
DER encoding is byte oriented, so the unused bits will always equal 0).
|
||||
|
||||
If the `expect_unused` is specified as None, the first element returned
|
||||
will be a tuple, with the first value being the extracted bit string
|
||||
while the second value will be the decoded number of unused bits.
|
||||
|
||||
If the `expect_unused` is unspecified, the decoding of byte with
|
||||
number of unused bits will not be attempted and the bit string will be
|
||||
returned as-is, the callee will be required to decode it and verify its
|
||||
correctness.
|
||||
|
||||
Future version of python will require the `expected_unused` parameter
|
||||
to be specified.
|
||||
|
||||
:param string: string of bytes to extract the BIT STRING from
|
||||
:type string: bytes like object
|
||||
:param expect_unused: number of bits that should be unused in the BIT
|
||||
STRING, or None, to return it to caller
|
||||
:type expect_unused: int or None
|
||||
|
||||
:raises UnexpectedDER: when the encoding does not follow DER.
|
||||
|
||||
:return: a tuple with first element being the extracted bit string and
|
||||
the second being the remaining bytes in the string (if any); if the
|
||||
`expect_unused` is specified as None, the first element of the returned
|
||||
tuple will be a tuple itself, with first element being the bit string
|
||||
as bytes and the second element being the number of unused bits at the
|
||||
end of the byte array as an integer
|
||||
:rtype: tuple
|
||||
"""
|
||||
if not string:
|
||||
raise UnexpectedDER("Empty string does not encode a bitstring")
|
||||
if expect_unused is _sentry:
|
||||
warnings.warn(
|
||||
"Legacy call convention used, expect_unused= needs to be"
|
||||
" specified",
|
||||
DeprecationWarning,
|
||||
)
|
||||
num = str_idx_as_int(string, 0)
|
||||
if string[:1] != b"\x03":
|
||||
raise UnexpectedDER("wanted bitstring (0x03), got 0x%02x" % num)
|
||||
length, llen = read_length(string[1:])
|
||||
if not length:
|
||||
raise UnexpectedDER("Invalid length of bit string, can't be 0")
|
||||
body = string[1 + llen : 1 + llen + length]
|
||||
rest = string[1 + llen + length :]
|
||||
if expect_unused is not _sentry:
|
||||
unused = str_idx_as_int(body, 0)
|
||||
if not 0 <= unused <= 7:
|
||||
raise UnexpectedDER("Invalid encoding of unused bits")
|
||||
if expect_unused is not None and expect_unused != unused:
|
||||
raise UnexpectedDER("Unexpected number of unused bits")
|
||||
body = body[1:]
|
||||
if unused:
|
||||
if not body:
|
||||
raise UnexpectedDER("Invalid encoding of empty bit string")
|
||||
last = str_idx_as_int(body, -1)
|
||||
# verify that all the unused bits are set to zero (DER requirement)
|
||||
if last & (2**unused - 1):
|
||||
raise UnexpectedDER("Non zero padding bits in bit string")
|
||||
if expect_unused is None:
|
||||
body = (body, unused)
|
||||
return body, rest
|
||||
|
||||
|
||||
# SEQUENCE([1, STRING(secexp), cont[0], OBJECT(curvename), cont[1], BINTSTRING)
|
||||
|
||||
|
||||
# signatures: (from RFC3279)
|
||||
# ansi-X9-62 OBJECT IDENTIFIER ::= {
|
||||
# iso(1) member-body(2) us(840) 10045 }
|
||||
#
|
||||
# id-ecSigType OBJECT IDENTIFIER ::= {
|
||||
# ansi-X9-62 signatures(4) }
|
||||
# ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
|
||||
# id-ecSigType 1 }
|
||||
# so 1,2,840,10045,4,1
|
||||
# so 0x42, .. ..
|
||||
|
||||
# Ecdsa-Sig-Value ::= SEQUENCE {
|
||||
# r INTEGER,
|
||||
# s INTEGER }
|
||||
|
||||
# id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }
|
||||
#
|
||||
# id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
|
||||
|
||||
# I think the secp224r1 identifier is (t=06,l=05,v=2b81040021)
|
||||
# secp224r1 OBJECT IDENTIFIER ::= {
|
||||
# iso(1) identified-organization(3) certicom(132) curve(0) 33 }
|
||||
# and the secp384r1 is (t=06,l=05,v=2b81040022)
|
||||
# secp384r1 OBJECT IDENTIFIER ::= {
|
||||
# iso(1) identified-organization(3) certicom(132) curve(0) 34 }
|
||||
|
||||
|
||||
def unpem(pem):
|
||||
if isinstance(pem, text_type): # pragma: no branch
|
||||
pem = pem.encode()
|
||||
|
||||
d = b("").join(
|
||||
[
|
||||
l.strip()
|
||||
for l in pem.split(b("\n"))
|
||||
if l and not l.startswith(b("-----"))
|
||||
]
|
||||
)
|
||||
return base64.b64decode(d)
|
||||
|
||||
|
||||
def topem(der, name):
|
||||
b64 = base64.b64encode(der)
|
||||
lines = [("-----BEGIN %s-----\n" % name).encode()]
|
||||
lines.extend(
|
||||
[b64[start : start + 64] + b("\n") for start in range(0, len(b64), 64)]
|
||||
)
|
||||
lines.append(("-----END %s-----\n" % name).encode())
|
||||
return b("").join(lines)
|
||||
336
dist/ba_data/python-site-packages/ecdsa/ecdh.py
vendored
336
dist/ba_data/python-site-packages/ecdsa/ecdh.py
vendored
|
|
@ -1,336 +0,0 @@
|
|||
"""
|
||||
Class for performing Elliptic-curve Diffie-Hellman (ECDH) operations.
|
||||
"""
|
||||
|
||||
from .util import number_to_string
|
||||
from .ellipticcurve import INFINITY
|
||||
from .keys import SigningKey, VerifyingKey
|
||||
|
||||
|
||||
__all__ = [
|
||||
"ECDH",
|
||||
"NoKeyError",
|
||||
"NoCurveError",
|
||||
"InvalidCurveError",
|
||||
"InvalidSharedSecretError",
|
||||
]
|
||||
|
||||
|
||||
class NoKeyError(Exception):
|
||||
"""ECDH. Key not found but it is needed for operation."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class NoCurveError(Exception):
|
||||
"""ECDH. Curve not set but it is needed for operation."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class InvalidCurveError(Exception):
|
||||
"""
|
||||
ECDH. Raised in case the public and private keys use different curves.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class InvalidSharedSecretError(Exception):
|
||||
"""ECDH. Raised in case the shared secret we obtained is an INFINITY."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ECDH(object):
|
||||
"""
|
||||
Elliptic-curve Diffie-Hellman (ECDH). A key agreement protocol.
|
||||
|
||||
Allows two parties, each having an elliptic-curve public-private key
|
||||
pair, to establish a shared secret over an insecure channel
|
||||
"""
|
||||
|
||||
def __init__(self, curve=None, private_key=None, public_key=None):
|
||||
"""
|
||||
ECDH init.
|
||||
|
||||
Call can be initialised without parameters, then the first operation
|
||||
(loading either key) will set the used curve.
|
||||
All parameters must be ultimately set before shared secret
|
||||
calculation will be allowed.
|
||||
|
||||
:param curve: curve for operations
|
||||
:type curve: Curve
|
||||
:param private_key: `my` private key for ECDH
|
||||
:type private_key: SigningKey
|
||||
:param public_key: `their` public key for ECDH
|
||||
:type public_key: VerifyingKey
|
||||
"""
|
||||
self.curve = curve
|
||||
self.private_key = None
|
||||
self.public_key = None
|
||||
if private_key:
|
||||
self.load_private_key(private_key)
|
||||
if public_key:
|
||||
self.load_received_public_key(public_key)
|
||||
|
||||
def _get_shared_secret(self, remote_public_key):
|
||||
if not self.private_key:
|
||||
raise NoKeyError(
|
||||
"Private key needs to be set to create shared secret"
|
||||
)
|
||||
if not self.public_key:
|
||||
raise NoKeyError(
|
||||
"Public key needs to be set to create shared secret"
|
||||
)
|
||||
if not (
|
||||
self.private_key.curve == self.curve == remote_public_key.curve
|
||||
):
|
||||
raise InvalidCurveError(
|
||||
"Curves for public key and private key is not equal."
|
||||
)
|
||||
|
||||
# shared secret = PUBKEYtheirs * PRIVATEKEYours
|
||||
result = (
|
||||
remote_public_key.pubkey.point
|
||||
* self.private_key.privkey.secret_multiplier
|
||||
)
|
||||
if result == INFINITY:
|
||||
raise InvalidSharedSecretError("Invalid shared secret (INFINITY).")
|
||||
|
||||
return result.x()
|
||||
|
||||
def set_curve(self, key_curve):
|
||||
"""
|
||||
Set the working curve for ecdh operations.
|
||||
|
||||
:param key_curve: curve from `curves` module
|
||||
:type key_curve: Curve
|
||||
"""
|
||||
self.curve = key_curve
|
||||
|
||||
def generate_private_key(self):
|
||||
"""
|
||||
Generate local private key for ecdh operation with curve that was set.
|
||||
|
||||
:raises NoCurveError: Curve must be set before key generation.
|
||||
|
||||
:return: public (verifying) key from this private key.
|
||||
:rtype: VerifyingKey
|
||||
"""
|
||||
if not self.curve:
|
||||
raise NoCurveError("Curve must be set prior to key generation.")
|
||||
return self.load_private_key(SigningKey.generate(curve=self.curve))
|
||||
|
||||
def load_private_key(self, private_key):
|
||||
"""
|
||||
Load private key from SigningKey (keys.py) object.
|
||||
|
||||
Needs to have the same curve as was set with set_curve method.
|
||||
If curve is not set - it sets from this SigningKey
|
||||
|
||||
:param private_key: Initialised SigningKey class
|
||||
:type private_key: SigningKey
|
||||
|
||||
:raises InvalidCurveError: private_key curve not the same as self.curve
|
||||
|
||||
:return: public (verifying) key from this private key.
|
||||
:rtype: VerifyingKey
|
||||
"""
|
||||
if not self.curve:
|
||||
self.curve = private_key.curve
|
||||
if self.curve != private_key.curve:
|
||||
raise InvalidCurveError("Curve mismatch.")
|
||||
self.private_key = private_key
|
||||
return self.private_key.get_verifying_key()
|
||||
|
||||
def load_private_key_bytes(self, private_key):
|
||||
"""
|
||||
Load private key from byte string.
|
||||
|
||||
Uses current curve and checks if the provided key matches
|
||||
the curve of ECDH key agreement.
|
||||
Key loads via from_string method of SigningKey class
|
||||
|
||||
:param private_key: private key in bytes string format
|
||||
:type private_key: :term:`bytes-like object`
|
||||
|
||||
:raises NoCurveError: Curve must be set before loading.
|
||||
|
||||
:return: public (verifying) key from this private key.
|
||||
:rtype: VerifyingKey
|
||||
"""
|
||||
if not self.curve:
|
||||
raise NoCurveError("Curve must be set prior to key load.")
|
||||
return self.load_private_key(
|
||||
SigningKey.from_string(private_key, curve=self.curve)
|
||||
)
|
||||
|
||||
def load_private_key_der(self, private_key_der):
|
||||
"""
|
||||
Load private key from DER byte string.
|
||||
|
||||
Compares the curve of the DER-encoded key with the ECDH set curve,
|
||||
uses the former if unset.
|
||||
|
||||
Note, the only DER format supported is the RFC5915
|
||||
Look at keys.py:SigningKey.from_der()
|
||||
|
||||
:param private_key_der: string with the DER encoding of private ECDSA
|
||||
key
|
||||
:type private_key_der: string
|
||||
|
||||
:raises InvalidCurveError: private_key curve not the same as self.curve
|
||||
|
||||
:return: public (verifying) key from this private key.
|
||||
:rtype: VerifyingKey
|
||||
"""
|
||||
return self.load_private_key(SigningKey.from_der(private_key_der))
|
||||
|
||||
def load_private_key_pem(self, private_key_pem):
|
||||
"""
|
||||
Load private key from PEM string.
|
||||
|
||||
Compares the curve of the DER-encoded key with the ECDH set curve,
|
||||
uses the former if unset.
|
||||
|
||||
Note, the only PEM format supported is the RFC5915
|
||||
Look at keys.py:SigningKey.from_pem()
|
||||
it needs to have `EC PRIVATE KEY` section
|
||||
|
||||
:param private_key_pem: string with PEM-encoded private ECDSA key
|
||||
:type private_key_pem: string
|
||||
|
||||
:raises InvalidCurveError: private_key curve not the same as self.curve
|
||||
|
||||
:return: public (verifying) key from this private key.
|
||||
:rtype: VerifyingKey
|
||||
"""
|
||||
return self.load_private_key(SigningKey.from_pem(private_key_pem))
|
||||
|
||||
def get_public_key(self):
|
||||
"""
|
||||
Provides a public key that matches the local private key.
|
||||
|
||||
Needs to be sent to the remote party.
|
||||
|
||||
:return: public (verifying) key from local private key.
|
||||
:rtype: VerifyingKey
|
||||
"""
|
||||
return self.private_key.get_verifying_key()
|
||||
|
||||
def load_received_public_key(self, public_key):
|
||||
"""
|
||||
Load public key from VerifyingKey (keys.py) object.
|
||||
|
||||
Needs to have the same curve as set as current for ecdh operation.
|
||||
If curve is not set - it sets it from VerifyingKey.
|
||||
|
||||
:param public_key: Initialised VerifyingKey class
|
||||
:type public_key: VerifyingKey
|
||||
|
||||
:raises InvalidCurveError: public_key curve not the same as self.curve
|
||||
"""
|
||||
if not self.curve:
|
||||
self.curve = public_key.curve
|
||||
if self.curve != public_key.curve:
|
||||
raise InvalidCurveError("Curve mismatch.")
|
||||
self.public_key = public_key
|
||||
|
||||
def load_received_public_key_bytes(
|
||||
self, public_key_str, valid_encodings=None
|
||||
):
|
||||
"""
|
||||
Load public key from byte string.
|
||||
|
||||
Uses current curve and checks if key length corresponds to
|
||||
the current curve.
|
||||
Key loads via from_string method of VerifyingKey class
|
||||
|
||||
:param public_key_str: public key in bytes string format
|
||||
:type public_key_str: :term:`bytes-like object`
|
||||
:param valid_encodings: list of acceptable point encoding formats,
|
||||
supported ones are: :term:`uncompressed`, :term:`compressed`,
|
||||
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
|
||||
name). All formats by default (specified with ``None``).
|
||||
:type valid_encodings: :term:`set-like object`
|
||||
"""
|
||||
return self.load_received_public_key(
|
||||
VerifyingKey.from_string(
|
||||
public_key_str, self.curve, valid_encodings
|
||||
)
|
||||
)
|
||||
|
||||
def load_received_public_key_der(self, public_key_der):
|
||||
"""
|
||||
Load public key from DER byte string.
|
||||
|
||||
Compares the curve of the DER-encoded key with the ECDH set curve,
|
||||
uses the former if unset.
|
||||
|
||||
Note, the only DER format supported is the RFC5912
|
||||
Look at keys.py:VerifyingKey.from_der()
|
||||
|
||||
:param public_key_der: string with the DER encoding of public ECDSA key
|
||||
:type public_key_der: string
|
||||
|
||||
:raises InvalidCurveError: public_key curve not the same as self.curve
|
||||
"""
|
||||
return self.load_received_public_key(
|
||||
VerifyingKey.from_der(public_key_der)
|
||||
)
|
||||
|
||||
def load_received_public_key_pem(self, public_key_pem):
|
||||
"""
|
||||
Load public key from PEM string.
|
||||
|
||||
Compares the curve of the PEM-encoded key with the ECDH set curve,
|
||||
uses the former if unset.
|
||||
|
||||
Note, the only PEM format supported is the RFC5912
|
||||
Look at keys.py:VerifyingKey.from_pem()
|
||||
|
||||
:param public_key_pem: string with PEM-encoded public ECDSA key
|
||||
:type public_key_pem: string
|
||||
|
||||
:raises InvalidCurveError: public_key curve not the same as self.curve
|
||||
"""
|
||||
return self.load_received_public_key(
|
||||
VerifyingKey.from_pem(public_key_pem)
|
||||
)
|
||||
|
||||
def generate_sharedsecret_bytes(self):
|
||||
"""
|
||||
Generate shared secret from local private key and remote public key.
|
||||
|
||||
The objects needs to have both private key and received public key
|
||||
before generation is allowed.
|
||||
|
||||
:raises InvalidCurveError: public_key curve not the same as self.curve
|
||||
:raises NoKeyError: public_key or private_key is not set
|
||||
|
||||
:return: shared secret
|
||||
:rtype: bytes
|
||||
"""
|
||||
return number_to_string(
|
||||
self.generate_sharedsecret(), self.private_key.curve.curve.p()
|
||||
)
|
||||
|
||||
def generate_sharedsecret(self):
|
||||
"""
|
||||
Generate shared secret from local private key and remote public key.
|
||||
|
||||
The objects needs to have both private key and received public key
|
||||
before generation is allowed.
|
||||
|
||||
It's the same for local and remote party,
|
||||
shared secret(local private key, remote public key) ==
|
||||
shared secret(local public key, remote private key)
|
||||
|
||||
:raises InvalidCurveError: public_key curve not the same as self.curve
|
||||
:raises NoKeyError: public_key or private_key is not set
|
||||
|
||||
:return: shared secret
|
||||
:rtype: int
|
||||
"""
|
||||
return self._get_shared_secret(self.public_key)
|
||||
859
dist/ba_data/python-site-packages/ecdsa/ecdsa.py
vendored
859
dist/ba_data/python-site-packages/ecdsa/ecdsa.py
vendored
|
|
@ -1,859 +0,0 @@
|
|||
#! /usr/bin/env python
|
||||
|
||||
"""
|
||||
Low level implementation of Elliptic-Curve Digital Signatures.
|
||||
|
||||
.. note ::
|
||||
You're most likely looking for the :py:class:`~ecdsa.keys` module.
|
||||
This is a low-level implementation of the ECDSA that operates on
|
||||
integers, not byte strings.
|
||||
|
||||
NOTE: This a low level implementation of ECDSA, for normal applications
|
||||
you should be looking at the keys.py module.
|
||||
|
||||
Classes and methods for elliptic-curve signatures:
|
||||
private keys, public keys, signatures,
|
||||
and definitions of prime-modulus curves.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# (In real-life applications, you would probably want to
|
||||
# protect against defects in SystemRandom.)
|
||||
from random import SystemRandom
|
||||
randrange = SystemRandom().randrange
|
||||
|
||||
# Generate a public/private key pair using the NIST Curve P-192:
|
||||
|
||||
g = generator_192
|
||||
n = g.order()
|
||||
secret = randrange( 1, n )
|
||||
pubkey = Public_key( g, g * secret )
|
||||
privkey = Private_key( pubkey, secret )
|
||||
|
||||
# Signing a hash value:
|
||||
|
||||
hash = randrange( 1, n )
|
||||
signature = privkey.sign( hash, randrange( 1, n ) )
|
||||
|
||||
# Verifying a signature for a hash value:
|
||||
|
||||
if pubkey.verifies( hash, signature ):
|
||||
print_("Demo verification succeeded.")
|
||||
else:
|
||||
print_("*** Demo verification failed.")
|
||||
|
||||
# Verification fails if the hash value is modified:
|
||||
|
||||
if pubkey.verifies( hash-1, signature ):
|
||||
print_("**** Demo verification failed to reject tampered hash.")
|
||||
else:
|
||||
print_("Demo verification correctly rejected tampered hash.")
|
||||
|
||||
Revision history:
|
||||
2005.12.31 - Initial version.
|
||||
|
||||
2008.11.25 - Substantial revisions introducing new classes.
|
||||
|
||||
2009.05.16 - Warn against using random.randrange in real applications.
|
||||
|
||||
2009.05.17 - Use random.SystemRandom by default.
|
||||
|
||||
Originally written in 2005 by Peter Pearson and placed in the public domain,
|
||||
modified as part of the python-ecdsa package.
|
||||
"""
|
||||
|
||||
from six import int2byte, b
|
||||
from . import ellipticcurve
|
||||
from . import numbertheory
|
||||
from .util import bit_length
|
||||
from ._compat import remove_whitespace
|
||||
|
||||
|
||||
class RSZeroError(RuntimeError):
|
||||
pass
|
||||
|
||||
|
||||
class InvalidPointError(RuntimeError):
|
||||
pass
|
||||
|
||||
|
||||
class Signature(object):
|
||||
"""
|
||||
ECDSA signature.
|
||||
|
||||
:ivar int r: the ``r`` element of the ECDSA signature
|
||||
:ivar int s: the ``s`` element of the ECDSA signature
|
||||
"""
|
||||
|
||||
def __init__(self, r, s):
|
||||
self.r = r
|
||||
self.s = s
|
||||
|
||||
def recover_public_keys(self, hash, generator):
|
||||
"""
|
||||
Returns two public keys for which the signature is valid
|
||||
|
||||
:param int hash: signed hash
|
||||
:param AbstractPoint generator: is the generator used in creation
|
||||
of the signature
|
||||
:rtype: tuple(Public_key, Public_key)
|
||||
:return: a pair of public keys that can validate the signature
|
||||
"""
|
||||
curve = generator.curve()
|
||||
n = generator.order()
|
||||
r = self.r
|
||||
s = self.s
|
||||
e = hash
|
||||
x = r
|
||||
|
||||
# Compute the curve point with x as x-coordinate
|
||||
alpha = (
|
||||
pow(x, 3, curve.p()) + (curve.a() * x) + curve.b()
|
||||
) % curve.p()
|
||||
beta = numbertheory.square_root_mod_prime(alpha, curve.p())
|
||||
y = beta if beta % 2 == 0 else curve.p() - beta
|
||||
|
||||
# Compute the public key
|
||||
R1 = ellipticcurve.PointJacobi(curve, x, y, 1, n)
|
||||
Q1 = numbertheory.inverse_mod(r, n) * (s * R1 + (-e % n) * generator)
|
||||
Pk1 = Public_key(generator, Q1)
|
||||
|
||||
# And the second solution
|
||||
R2 = ellipticcurve.PointJacobi(curve, x, -y, 1, n)
|
||||
Q2 = numbertheory.inverse_mod(r, n) * (s * R2 + (-e % n) * generator)
|
||||
Pk2 = Public_key(generator, Q2)
|
||||
|
||||
return [Pk1, Pk2]
|
||||
|
||||
|
||||
class Public_key(object):
|
||||
"""Public key for ECDSA."""
|
||||
|
||||
def __init__(self, generator, point, verify=True):
|
||||
"""Low level ECDSA public key object.
|
||||
|
||||
:param generator: the Point that generates the group (the base point)
|
||||
:param point: the Point that defines the public key
|
||||
:param bool verify: if True check if point is valid point on curve
|
||||
|
||||
:raises InvalidPointError: if the point parameters are invalid or
|
||||
point does not lay on the curve
|
||||
"""
|
||||
|
||||
self.curve = generator.curve()
|
||||
self.generator = generator
|
||||
self.point = point
|
||||
n = generator.order()
|
||||
p = self.curve.p()
|
||||
if not (0 <= point.x() < p) or not (0 <= point.y() < p):
|
||||
raise InvalidPointError(
|
||||
"The public point has x or y out of range."
|
||||
)
|
||||
if verify and not self.curve.contains_point(point.x(), point.y()):
|
||||
raise InvalidPointError("Point does not lay on the curve")
|
||||
if not n:
|
||||
raise InvalidPointError("Generator point must have order.")
|
||||
# for curve parameters with base point with cofactor 1, all points
|
||||
# that are on the curve are scalar multiples of the base point, so
|
||||
# verifying that is not necessary. See Section 3.2.2.1 of SEC 1 v2
|
||||
if (
|
||||
verify
|
||||
and self.curve.cofactor() != 1
|
||||
and not n * point == ellipticcurve.INFINITY
|
||||
):
|
||||
raise InvalidPointError("Generator point order is bad.")
|
||||
|
||||
def __eq__(self, other):
|
||||
"""Return True if the keys are identical, False otherwise.
|
||||
|
||||
Note: for comparison, only placement on the same curve and point
|
||||
equality is considered, use of the same generator point is not
|
||||
considered.
|
||||
"""
|
||||
if isinstance(other, Public_key):
|
||||
return self.curve == other.curve and self.point == other.point
|
||||
return NotImplemented
|
||||
|
||||
def __ne__(self, other):
|
||||
"""Return False if the keys are identical, True otherwise."""
|
||||
return not self == other
|
||||
|
||||
def verifies(self, hash, signature):
|
||||
"""Verify that signature is a valid signature of hash.
|
||||
Return True if the signature is valid.
|
||||
"""
|
||||
|
||||
# From X9.62 J.3.1.
|
||||
|
||||
G = self.generator
|
||||
n = G.order()
|
||||
r = signature.r
|
||||
s = signature.s
|
||||
if r < 1 or r > n - 1:
|
||||
return False
|
||||
if s < 1 or s > n - 1:
|
||||
return False
|
||||
c = numbertheory.inverse_mod(s, n)
|
||||
u1 = (hash * c) % n
|
||||
u2 = (r * c) % n
|
||||
if hasattr(G, "mul_add"):
|
||||
xy = G.mul_add(u1, self.point, u2)
|
||||
else:
|
||||
xy = u1 * G + u2 * self.point
|
||||
v = xy.x() % n
|
||||
return v == r
|
||||
|
||||
|
||||
class Private_key(object):
|
||||
"""Private key for ECDSA."""
|
||||
|
||||
def __init__(self, public_key, secret_multiplier):
|
||||
"""public_key is of class Public_key;
|
||||
secret_multiplier is a large integer.
|
||||
"""
|
||||
|
||||
self.public_key = public_key
|
||||
self.secret_multiplier = secret_multiplier
|
||||
|
||||
def __eq__(self, other):
|
||||
"""Return True if the points are identical, False otherwise."""
|
||||
if isinstance(other, Private_key):
|
||||
return (
|
||||
self.public_key == other.public_key
|
||||
and self.secret_multiplier == other.secret_multiplier
|
||||
)
|
||||
return NotImplemented
|
||||
|
||||
def __ne__(self, other):
|
||||
"""Return False if the points are identical, True otherwise."""
|
||||
return not self == other
|
||||
|
||||
def sign(self, hash, random_k):
|
||||
"""Return a signature for the provided hash, using the provided
|
||||
random nonce. It is absolutely vital that random_k be an unpredictable
|
||||
number in the range [1, self.public_key.point.order()-1]. If
|
||||
an attacker can guess random_k, he can compute our private key from a
|
||||
single signature. Also, if an attacker knows a few high-order
|
||||
bits (or a few low-order bits) of random_k, he can compute our private
|
||||
key from many signatures. The generation of nonces with adequate
|
||||
cryptographic strength is very difficult and far beyond the scope
|
||||
of this comment.
|
||||
|
||||
May raise RuntimeError, in which case retrying with a new
|
||||
random value k is in order.
|
||||
"""
|
||||
|
||||
G = self.public_key.generator
|
||||
n = G.order()
|
||||
k = random_k % n
|
||||
# Fix the bit-length of the random nonce,
|
||||
# so that it doesn't leak via timing.
|
||||
# This does not change that ks = k mod n
|
||||
ks = k + n
|
||||
kt = ks + n
|
||||
if bit_length(ks) == bit_length(n):
|
||||
p1 = kt * G
|
||||
else:
|
||||
p1 = ks * G
|
||||
r = p1.x() % n
|
||||
if r == 0:
|
||||
raise RSZeroError("amazingly unlucky random number r")
|
||||
s = (
|
||||
numbertheory.inverse_mod(k, n)
|
||||
* (hash + (self.secret_multiplier * r) % n)
|
||||
) % n
|
||||
if s == 0:
|
||||
raise RSZeroError("amazingly unlucky random number s")
|
||||
return Signature(r, s)
|
||||
|
||||
|
||||
def int_to_string(x):
|
||||
"""Convert integer x into a string of bytes, as per X9.62."""
|
||||
assert x >= 0
|
||||
if x == 0:
|
||||
return b("\0")
|
||||
result = []
|
||||
while x:
|
||||
ordinal = x & 0xFF
|
||||
result.append(int2byte(ordinal))
|
||||
x >>= 8
|
||||
|
||||
result.reverse()
|
||||
return b("").join(result)
|
||||
|
||||
|
||||
def string_to_int(s):
|
||||
"""Convert a string of bytes into an integer, as per X9.62."""
|
||||
result = 0
|
||||
for c in s:
|
||||
if not isinstance(c, int):
|
||||
c = ord(c)
|
||||
result = 256 * result + c
|
||||
return result
|
||||
|
||||
|
||||
def digest_integer(m):
|
||||
"""Convert an integer into a string of bytes, compute
|
||||
its SHA-1 hash, and convert the result to an integer."""
|
||||
#
|
||||
# I don't expect this function to be used much. I wrote
|
||||
# it in order to be able to duplicate the examples
|
||||
# in ECDSAVS.
|
||||
#
|
||||
from hashlib import sha1
|
||||
|
||||
return string_to_int(sha1(int_to_string(m)).digest())
|
||||
|
||||
|
||||
def point_is_valid(generator, x, y):
|
||||
"""Is (x,y) a valid public key based on the specified generator?"""
|
||||
|
||||
# These are the tests specified in X9.62.
|
||||
|
||||
n = generator.order()
|
||||
curve = generator.curve()
|
||||
p = curve.p()
|
||||
if not (0 <= x < p) or not (0 <= y < p):
|
||||
return False
|
||||
if not curve.contains_point(x, y):
|
||||
return False
|
||||
if (
|
||||
curve.cofactor() != 1
|
||||
and not n * ellipticcurve.PointJacobi(curve, x, y, 1)
|
||||
== ellipticcurve.INFINITY
|
||||
):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
# secp112r1 curve
|
||||
_p = int(remove_whitespace("DB7C 2ABF62E3 5E668076 BEAD208B"), 16)
|
||||
# s = 00F50B02 8E4D696E 67687561 51752904 72783FB1
|
||||
_a = int(remove_whitespace("DB7C 2ABF62E3 5E668076 BEAD2088"), 16)
|
||||
_b = int(remove_whitespace("659E F8BA0439 16EEDE89 11702B22"), 16)
|
||||
_Gx = int(remove_whitespace("09487239 995A5EE7 6B55F9C2 F098"), 16)
|
||||
_Gy = int(remove_whitespace("A89C E5AF8724 C0A23E0E 0FF77500"), 16)
|
||||
_r = int(remove_whitespace("DB7C 2ABF62E3 5E7628DF AC6561C5"), 16)
|
||||
_h = 1
|
||||
curve_112r1 = ellipticcurve.CurveFp(_p, _a, _b, _h)
|
||||
generator_112r1 = ellipticcurve.PointJacobi(
|
||||
curve_112r1, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
# secp112r2 curve
|
||||
_p = int(remove_whitespace("DB7C 2ABF62E3 5E668076 BEAD208B"), 16)
|
||||
# s = 022757A1 114D69E 67687561 51755316 C05E0BD4
|
||||
_a = int(remove_whitespace("6127 C24C05F3 8A0AAAF6 5C0EF02C"), 16)
|
||||
_b = int(remove_whitespace("51DE F1815DB5 ED74FCC3 4C85D709"), 16)
|
||||
_Gx = int(remove_whitespace("4BA30AB5 E892B4E1 649DD092 8643"), 16)
|
||||
_Gy = int(remove_whitespace("ADCD 46F5882E 3747DEF3 6E956E97"), 16)
|
||||
_r = int(remove_whitespace("36DF 0AAFD8B8 D7597CA1 0520D04B"), 16)
|
||||
_h = 4
|
||||
curve_112r2 = ellipticcurve.CurveFp(_p, _a, _b, _h)
|
||||
generator_112r2 = ellipticcurve.PointJacobi(
|
||||
curve_112r2, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
# secp128r1 curve
|
||||
_p = int(remove_whitespace("FFFFFFFD FFFFFFFF FFFFFFFF FFFFFFFF"), 16)
|
||||
# S = 000E0D4D 69E6768 75615175 0CC03A44 73D03679
|
||||
# a and b are mod p, so a is equal to p-3, or simply -3
|
||||
# _a = -3
|
||||
_b = int(remove_whitespace("E87579C1 1079F43D D824993C 2CEE5ED3"), 16)
|
||||
_Gx = int(remove_whitespace("161FF752 8B899B2D 0C28607C A52C5B86"), 16)
|
||||
_Gy = int(remove_whitespace("CF5AC839 5BAFEB13 C02DA292 DDED7A83"), 16)
|
||||
_r = int(remove_whitespace("FFFFFFFE 00000000 75A30D1B 9038A115"), 16)
|
||||
_h = 1
|
||||
curve_128r1 = ellipticcurve.CurveFp(_p, -3, _b, _h)
|
||||
generator_128r1 = ellipticcurve.PointJacobi(
|
||||
curve_128r1, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
# secp160r1
|
||||
_p = int(remove_whitespace("FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFF"), 16)
|
||||
# S = 1053CDE4 2C14D696 E6768756 1517533B F3F83345
|
||||
# a and b are mod p, so a is equal to p-3, or simply -3
|
||||
# _a = -3
|
||||
_b = int(remove_whitespace("1C97BEFC 54BD7A8B 65ACF89F 81D4D4AD C565FA45"), 16)
|
||||
_Gx = int(
|
||||
remove_whitespace("4A96B568 8EF57328 46646989 68C38BB9 13CBFC82"),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace("23A62855 3168947D 59DCC912 04235137 7AC5FB32"),
|
||||
16,
|
||||
)
|
||||
_r = int(
|
||||
remove_whitespace("01 00000000 00000000 0001F4C8 F927AED3 CA752257"),
|
||||
16,
|
||||
)
|
||||
_h = 1
|
||||
curve_160r1 = ellipticcurve.CurveFp(_p, -3, _b, _h)
|
||||
generator_160r1 = ellipticcurve.PointJacobi(
|
||||
curve_160r1, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
# NIST Curve P-192:
|
||||
_p = 6277101735386680763835789423207666416083908700390324961279
|
||||
_r = 6277101735386680763835789423176059013767194773182842284081
|
||||
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
|
||||
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_192 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||||
generator_192 = ellipticcurve.PointJacobi(
|
||||
curve_192, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
# NIST Curve P-224:
|
||||
_p = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
2695994666715063979466701508701963067355791626002630814351
|
||||
0066298881"""
|
||||
)
|
||||
)
|
||||
_r = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
2695994666715063979466701508701962594045780771442439172168
|
||||
2722368061"""
|
||||
)
|
||||
)
|
||||
# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
|
||||
# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943
|
||||
2355FFB4"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6
|
||||
115C1D21"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199
|
||||
85007E34"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_224 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||||
generator_224 = ellipticcurve.PointJacobi(
|
||||
curve_224, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
# NIST Curve P-256:
|
||||
_p = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
1157920892103562487626974469494075735300861434152903141955
|
||||
33631308867097853951"""
|
||||
)
|
||||
)
|
||||
_r = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
115792089210356248762697446949407573529996955224135760342
|
||||
422259061068512044369"""
|
||||
)
|
||||
)
|
||||
# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
|
||||
# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6
|
||||
3BCE3C3E 27D2604B"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0
|
||||
F4A13945 D898C296"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE
|
||||
CBB64068 37BF51F5"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_256 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||||
generator_256 = ellipticcurve.PointJacobi(
|
||||
curve_256, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
# NIST Curve P-384:
|
||||
_p = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
3940200619639447921227904010014361380507973927046544666794
|
||||
8293404245721771496870329047266088258938001861606973112319"""
|
||||
)
|
||||
)
|
||||
_r = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
3940200619639447921227904010014361380507973927046544666794
|
||||
6905279627659399113263569398956308152294913554433653942643"""
|
||||
)
|
||||
)
|
||||
# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
|
||||
# c = int(remove_whitespace(
|
||||
# """
|
||||
# 79d1e655 f868f02f ff48dcde e14151dd b80643c1 406d0ca1
|
||||
# 0dfe6fc5 2009540a 495e8042 ea5f744f 6e184667 cc722483"""
|
||||
# ), 16)
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112
|
||||
0314088F 5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98
|
||||
59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
3617DE4A 96262C6F 5D9E98BF 9292DC29 F8F41DBD 289A147C
|
||||
E9DA3113 B5F0B8C0 0A60B1CE 1D7E819D 7A431D7C 90EA0E5F"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_384 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||||
generator_384 = ellipticcurve.PointJacobi(
|
||||
curve_384, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
# NIST Curve P-521:
|
||||
_p = int(
|
||||
"686479766013060971498190079908139321726943530014330540939"
|
||||
"446345918554318339765605212255964066145455497729631139148"
|
||||
"0858037121987999716643812574028291115057151"
|
||||
)
|
||||
_r = int(
|
||||
"686479766013060971498190079908139321726943530014330540939"
|
||||
"446345918554318339765539424505774633321719753296399637136"
|
||||
"3321113864768612440380340372808892707005449"
|
||||
)
|
||||
# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
|
||||
# c = int(remove_whitespace(
|
||||
# """
|
||||
# 0b4 8bfa5f42 0a349495 39d2bdfc 264eeeeb 077688e4
|
||||
# 4fbf0ad8 f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9
|
||||
# ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637"""
|
||||
# ), 16)
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B
|
||||
99B315F3 B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD
|
||||
3BB1BF07 3573DF88 3D2C34F1 EF451FD4 6B503F00"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139
|
||||
053FB521 F828AF60 6B4D3DBA A14B5E77 EFE75928 FE1DC127
|
||||
A2FFA8DE 3348B3C1 856A429B F97E7E31 C2E5BD66"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449
|
||||
579B4468 17AFBD17 273E662C 97EE7299 5EF42640 C550B901
|
||||
3FAD0761 353C7086 A272C240 88BE9476 9FD16650"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_521 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||||
generator_521 = ellipticcurve.PointJacobi(
|
||||
curve_521, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
# Certicom secp256-k1
|
||||
_a = 0x0000000000000000000000000000000000000000000000000000000000000000
|
||||
_b = 0x0000000000000000000000000000000000000000000000000000000000000007
|
||||
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
||||
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
|
||||
_Gy = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
|
||||
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
||||
|
||||
curve_secp256k1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_secp256k1 = ellipticcurve.PointJacobi(
|
||||
curve_secp256k1, _Gx, _Gy, 1, _r, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-160-r1
|
||||
_a = 0x340E7BE2A280EB74E2BE61BADA745D97E8F7C300
|
||||
_b = 0x1E589A8595423412134FAA2DBDEC95C8D8675E58
|
||||
_p = 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F
|
||||
_Gx = 0xBED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3
|
||||
_Gy = 0x1667CB477A1A8EC338F94741669C976316DA6321
|
||||
_q = 0xE95E4A5F737059DC60DF5991D45029409E60FC09
|
||||
|
||||
curve_brainpoolp160r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp160r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp160r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-192-r1
|
||||
_a = 0x6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28EF
|
||||
_b = 0x469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF25C9
|
||||
_p = 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297
|
||||
_Gx = 0xC0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375FD6
|
||||
_Gy = 0x14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B8F
|
||||
_q = 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1
|
||||
|
||||
curve_brainpoolp192r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp192r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp192r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-224-r1
|
||||
_a = 0x68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
|
||||
_b = 0x2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B
|
||||
_p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
|
||||
_Gx = 0x0D9029AD2C7E5CF4340823B2A87DC68C9E4CE3174C1E6EFDEE12C07D
|
||||
_Gy = 0x58AA56F772C0726F24C6B89E4ECDAC24354B9E99CAA3F6D3761402CD
|
||||
_q = 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F
|
||||
|
||||
curve_brainpoolp224r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp224r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp224r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-256-r1
|
||||
_a = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9
|
||||
_b = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6
|
||||
_p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377
|
||||
_Gx = 0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262
|
||||
_Gy = 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997
|
||||
_q = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7
|
||||
|
||||
curve_brainpoolp256r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp256r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp256r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-320-r1
|
||||
_a = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
3EE30B568FBAB0F883CCEBD46D3F3BB8A2A73513F5EB79DA66190EB085FFA9
|
||||
F492F375A97D860EB4"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539
|
||||
816F5EB4AC8FB1F1A6"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_p = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
D35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC
|
||||
28FCD412B1F1B32E27"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
43BD7E9AFB53D8B85289BCC48EE5BFE6F20137D10A087EB6E7871E2A10A599
|
||||
C710AF8D0D39E20611"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9C77877AAAC6A
|
||||
C7D35245D1692E8EE1"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_q = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
D35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658
|
||||
E98691555B44C59311"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_brainpoolp320r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp320r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp320r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-384-r1
|
||||
_a = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9
|
||||
0F8AA5814A503AD4EB04A8C7DD22CE2826"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62
|
||||
D57CB4390295DBC9943AB78696FA504C11"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_p = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711
|
||||
23ACD3A729901D1A71874700133107EC53"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10
|
||||
E8E826E03436D646AAEF87B2E247D4AF1E"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF991292
|
||||
80E4646217791811142820341263C5315"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_q = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425
|
||||
A7CF3AB6AF6B7FC3103B883202E9046565"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_brainpoolp384r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp384r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp384r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
|
||||
# Brainpool P-512-r1
|
||||
_a = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863
|
||||
BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_b = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117
|
||||
A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_p = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308
|
||||
717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009
|
||||
8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81
|
||||
11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
_q = int(
|
||||
remove_whitespace(
|
||||
"""
|
||||
AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308
|
||||
70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"""
|
||||
),
|
||||
16,
|
||||
)
|
||||
|
||||
curve_brainpoolp512r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||||
generator_brainpoolp512r1 = ellipticcurve.PointJacobi(
|
||||
curve_brainpoolp512r1, _Gx, _Gy, 1, _q, generator=True
|
||||
)
|
||||
252
dist/ba_data/python-site-packages/ecdsa/eddsa.py
vendored
252
dist/ba_data/python-site-packages/ecdsa/eddsa.py
vendored
|
|
@ -1,252 +0,0 @@
|
|||
"""Implementation of Edwards Digital Signature Algorithm."""
|
||||
|
||||
import hashlib
|
||||
from ._sha3 import shake_256
|
||||
from . import ellipticcurve
|
||||
from ._compat import (
|
||||
remove_whitespace,
|
||||
bit_length,
|
||||
bytes_to_int,
|
||||
int_to_bytes,
|
||||
compat26_str,
|
||||
)
|
||||
|
||||
# edwards25519, defined in RFC7748
|
||||
_p = 2**255 - 19
|
||||
_a = -1
|
||||
_d = int(
|
||||
remove_whitespace(
|
||||
"370957059346694393431380835087545651895421138798432190163887855330"
|
||||
"85940283555"
|
||||
)
|
||||
)
|
||||
_h = 8
|
||||
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"151122213495354007725011514095885315114540126930418572060461132"
|
||||
"83949847762202"
|
||||
)
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"463168356949264781694283940034751631413079938662562256157830336"
|
||||
"03165251855960"
|
||||
)
|
||||
)
|
||||
_r = 2**252 + 0x14DEF9DEA2F79CD65812631A5CF5D3ED
|
||||
|
||||
|
||||
def _sha512(data):
|
||||
return hashlib.new("sha512", compat26_str(data)).digest()
|
||||
|
||||
|
||||
curve_ed25519 = ellipticcurve.CurveEdTw(_p, _a, _d, _h, _sha512)
|
||||
generator_ed25519 = ellipticcurve.PointEdwards(
|
||||
curve_ed25519, _Gx, _Gy, 1, _Gx * _Gy % _p, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
# edwards448, defined in RFC7748
|
||||
_p = 2**448 - 2**224 - 1
|
||||
_a = 1
|
||||
_d = -39081 % _p
|
||||
_h = 4
|
||||
|
||||
_Gx = int(
|
||||
remove_whitespace(
|
||||
"224580040295924300187604334099896036246789641632564134246125461"
|
||||
"686950415467406032909029192869357953282578032075146446173674602635"
|
||||
"247710"
|
||||
)
|
||||
)
|
||||
_Gy = int(
|
||||
remove_whitespace(
|
||||
"298819210078481492676017930443930673437544040154080242095928241"
|
||||
"372331506189835876003536878655418784733982303233503462500531545062"
|
||||
"832660"
|
||||
)
|
||||
)
|
||||
_r = 2**446 - 0x8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D
|
||||
|
||||
|
||||
def _shake256(data):
|
||||
return shake_256(data, 114)
|
||||
|
||||
|
||||
curve_ed448 = ellipticcurve.CurveEdTw(_p, _a, _d, _h, _shake256)
|
||||
generator_ed448 = ellipticcurve.PointEdwards(
|
||||
curve_ed448, _Gx, _Gy, 1, _Gx * _Gy % _p, _r, generator=True
|
||||
)
|
||||
|
||||
|
||||
class PublicKey(object):
|
||||
"""Public key for the Edwards Digital Signature Algorithm."""
|
||||
|
||||
def __init__(self, generator, public_key, public_point=None):
|
||||
self.generator = generator
|
||||
self.curve = generator.curve()
|
||||
self.__encoded = public_key
|
||||
# plus one for the sign bit and round up
|
||||
self.baselen = (bit_length(self.curve.p()) + 1 + 7) // 8
|
||||
if len(public_key) != self.baselen:
|
||||
raise ValueError(
|
||||
"Incorrect size of the public key, expected: {0} bytes".format(
|
||||
self.baselen
|
||||
)
|
||||
)
|
||||
if public_point:
|
||||
self.__point = public_point
|
||||
else:
|
||||
self.__point = ellipticcurve.PointEdwards.from_bytes(
|
||||
self.curve, public_key
|
||||
)
|
||||
|
||||
def __eq__(self, other):
|
||||
if isinstance(other, PublicKey):
|
||||
return (
|
||||
self.curve == other.curve and self.__encoded == other.__encoded
|
||||
)
|
||||
return NotImplemented
|
||||
|
||||
def __ne__(self, other):
|
||||
return not self == other
|
||||
|
||||
@property
|
||||
def point(self):
|
||||
return self.__point
|
||||
|
||||
@point.setter
|
||||
def point(self, other):
|
||||
if self.__point != other:
|
||||
raise ValueError("Can't change the coordinates of the point")
|
||||
self.__point = other
|
||||
|
||||
def public_point(self):
|
||||
return self.__point
|
||||
|
||||
def public_key(self):
|
||||
return self.__encoded
|
||||
|
||||
def verify(self, data, signature):
|
||||
"""Verify a Pure EdDSA signature over data."""
|
||||
data = compat26_str(data)
|
||||
if len(signature) != 2 * self.baselen:
|
||||
raise ValueError(
|
||||
"Invalid signature length, expected: {0} bytes".format(
|
||||
2 * self.baselen
|
||||
)
|
||||
)
|
||||
R = ellipticcurve.PointEdwards.from_bytes(
|
||||
self.curve, signature[: self.baselen]
|
||||
)
|
||||
S = bytes_to_int(signature[self.baselen :], "little")
|
||||
if S >= self.generator.order():
|
||||
raise ValueError("Invalid signature")
|
||||
|
||||
dom = bytearray()
|
||||
if self.curve == curve_ed448:
|
||||
dom = bytearray(b"SigEd448" + b"\x00\x00")
|
||||
|
||||
k = bytes_to_int(
|
||||
self.curve.hash_func(dom + R.to_bytes() + self.__encoded + data),
|
||||
"little",
|
||||
)
|
||||
|
||||
if self.generator * S != self.__point * k + R:
|
||||
raise ValueError("Invalid signature")
|
||||
|
||||
return True
|
||||
|
||||
|
||||
class PrivateKey(object):
|
||||
"""Private key for the Edwards Digital Signature Algorithm."""
|
||||
|
||||
def __init__(self, generator, private_key):
|
||||
self.generator = generator
|
||||
self.curve = generator.curve()
|
||||
# plus one for the sign bit and round up
|
||||
self.baselen = (bit_length(self.curve.p()) + 1 + 7) // 8
|
||||
if len(private_key) != self.baselen:
|
||||
raise ValueError(
|
||||
"Incorrect size of private key, expected: {0} bytes".format(
|
||||
self.baselen
|
||||
)
|
||||
)
|
||||
self.__private_key = bytes(private_key)
|
||||
self.__h = bytearray(self.curve.hash_func(private_key))
|
||||
self.__public_key = None
|
||||
|
||||
a = self.__h[: self.baselen]
|
||||
a = self._key_prune(a)
|
||||
scalar = bytes_to_int(a, "little")
|
||||
self.__s = scalar
|
||||
|
||||
@property
|
||||
def private_key(self):
|
||||
return self.__private_key
|
||||
|
||||
def __eq__(self, other):
|
||||
if isinstance(other, PrivateKey):
|
||||
return (
|
||||
self.curve == other.curve
|
||||
and self.__private_key == other.__private_key
|
||||
)
|
||||
return NotImplemented
|
||||
|
||||
def __ne__(self, other):
|
||||
return not self == other
|
||||
|
||||
def _key_prune(self, key):
|
||||
# make sure the key is not in a small subgroup
|
||||
h = self.curve.cofactor()
|
||||
if h == 4:
|
||||
h_log = 2
|
||||
elif h == 8:
|
||||
h_log = 3
|
||||
else:
|
||||
raise ValueError("Only cofactor 4 and 8 curves supported")
|
||||
key[0] &= ~((1 << h_log) - 1)
|
||||
|
||||
# ensure the highest bit is set but no higher
|
||||
l = bit_length(self.curve.p())
|
||||
if l % 8 == 0:
|
||||
key[-1] = 0
|
||||
key[-2] |= 0x80
|
||||
else:
|
||||
key[-1] = key[-1] & (1 << (l % 8)) - 1 | 1 << (l % 8) - 1
|
||||
return key
|
||||
|
||||
def public_key(self):
|
||||
"""Generate the public key based on the included private key"""
|
||||
if self.__public_key:
|
||||
return self.__public_key
|
||||
|
||||
public_point = self.generator * self.__s
|
||||
|
||||
self.__public_key = PublicKey(
|
||||
self.generator, public_point.to_bytes(), public_point
|
||||
)
|
||||
|
||||
return self.__public_key
|
||||
|
||||
def sign(self, data):
|
||||
"""Perform a Pure EdDSA signature over data."""
|
||||
data = compat26_str(data)
|
||||
A = self.public_key().public_key()
|
||||
|
||||
prefix = self.__h[self.baselen :]
|
||||
|
||||
dom = bytearray()
|
||||
if self.curve == curve_ed448:
|
||||
dom = bytearray(b"SigEd448" + b"\x00\x00")
|
||||
|
||||
r = bytes_to_int(self.curve.hash_func(dom + prefix + data), "little")
|
||||
R = (self.generator * r).to_bytes()
|
||||
|
||||
k = bytes_to_int(self.curve.hash_func(dom + R + A + data), "little")
|
||||
k %= self.generator.order()
|
||||
|
||||
S = (r + k * self.__s) % self.generator.order()
|
||||
|
||||
return R + int_to_bytes(S, self.baselen, "little")
|
||||
1584
dist/ba_data/python-site-packages/ecdsa/ellipticcurve.py
vendored
1584
dist/ba_data/python-site-packages/ecdsa/ellipticcurve.py
vendored
File diff suppressed because it is too large
Load diff
|
|
@ -1,4 +0,0 @@
|
|||
class MalformedPointError(AssertionError):
|
||||
"""Raised in case the encoding of private or public key is malformed."""
|
||||
|
||||
pass
|
||||
1612
dist/ba_data/python-site-packages/ecdsa/keys.py
vendored
1612
dist/ba_data/python-site-packages/ecdsa/keys.py
vendored
File diff suppressed because it is too large
Load diff
|
|
@ -1,825 +0,0 @@
|
|||
#! /usr/bin/env python
|
||||
#
|
||||
# Provide some simple capabilities from number theory.
|
||||
#
|
||||
# Version of 2008.11.14.
|
||||
#
|
||||
# Written in 2005 and 2006 by Peter Pearson and placed in the public domain.
|
||||
# Revision history:
|
||||
# 2008.11.14: Use pow(base, exponent, modulus) for modular_exp.
|
||||
# Make gcd and lcm accept arbitrarily many arguments.
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import sys
|
||||
from six import integer_types, PY2
|
||||
from six.moves import reduce
|
||||
|
||||
try:
|
||||
xrange
|
||||
except NameError:
|
||||
xrange = range
|
||||
try:
|
||||
from gmpy2 import powmod
|
||||
|
||||
GMPY2 = True
|
||||
GMPY = False
|
||||
except ImportError:
|
||||
GMPY2 = False
|
||||
try:
|
||||
from gmpy import mpz
|
||||
|
||||
GMPY = True
|
||||
except ImportError:
|
||||
GMPY = False
|
||||
|
||||
import math
|
||||
import warnings
|
||||
|
||||
|
||||
class Error(Exception):
|
||||
"""Base class for exceptions in this module."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class JacobiError(Error):
|
||||
pass
|
||||
|
||||
|
||||
class SquareRootError(Error):
|
||||
pass
|
||||
|
||||
|
||||
class NegativeExponentError(Error):
|
||||
pass
|
||||
|
||||
|
||||
def modular_exp(base, exponent, modulus): # pragma: no cover
|
||||
"""Raise base to exponent, reducing by modulus"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused in library code. If you use this code, "
|
||||
"change to pow() builtin.",
|
||||
DeprecationWarning,
|
||||
)
|
||||
if exponent < 0:
|
||||
raise NegativeExponentError(
|
||||
"Negative exponents (%d) not allowed" % exponent
|
||||
)
|
||||
return pow(base, exponent, modulus)
|
||||
|
||||
|
||||
def polynomial_reduce_mod(poly, polymod, p):
|
||||
"""Reduce poly by polymod, integer arithmetic modulo p.
|
||||
|
||||
Polynomials are represented as lists of coefficients
|
||||
of increasing powers of x."""
|
||||
|
||||
# This module has been tested only by extensive use
|
||||
# in calculating modular square roots.
|
||||
|
||||
# Just to make this easy, require a monic polynomial:
|
||||
assert polymod[-1] == 1
|
||||
|
||||
assert len(polymod) > 1
|
||||
|
||||
while len(poly) >= len(polymod):
|
||||
if poly[-1] != 0:
|
||||
for i in xrange(2, len(polymod) + 1):
|
||||
poly[-i] = (poly[-i] - poly[-1] * polymod[-i]) % p
|
||||
poly = poly[0:-1]
|
||||
|
||||
return poly
|
||||
|
||||
|
||||
def polynomial_multiply_mod(m1, m2, polymod, p):
|
||||
"""Polynomial multiplication modulo a polynomial over ints mod p.
|
||||
|
||||
Polynomials are represented as lists of coefficients
|
||||
of increasing powers of x."""
|
||||
|
||||
# This is just a seat-of-the-pants implementation.
|
||||
|
||||
# This module has been tested only by extensive use
|
||||
# in calculating modular square roots.
|
||||
|
||||
# Initialize the product to zero:
|
||||
|
||||
prod = (len(m1) + len(m2) - 1) * [0]
|
||||
|
||||
# Add together all the cross-terms:
|
||||
|
||||
for i in xrange(len(m1)):
|
||||
for j in xrange(len(m2)):
|
||||
prod[i + j] = (prod[i + j] + m1[i] * m2[j]) % p
|
||||
|
||||
return polynomial_reduce_mod(prod, polymod, p)
|
||||
|
||||
|
||||
def polynomial_exp_mod(base, exponent, polymod, p):
|
||||
"""Polynomial exponentiation modulo a polynomial over ints mod p.
|
||||
|
||||
Polynomials are represented as lists of coefficients
|
||||
of increasing powers of x."""
|
||||
|
||||
# Based on the Handbook of Applied Cryptography, algorithm 2.227.
|
||||
|
||||
# This module has been tested only by extensive use
|
||||
# in calculating modular square roots.
|
||||
|
||||
assert exponent < p
|
||||
|
||||
if exponent == 0:
|
||||
return [1]
|
||||
|
||||
G = base
|
||||
k = exponent
|
||||
if k % 2 == 1:
|
||||
s = G
|
||||
else:
|
||||
s = [1]
|
||||
|
||||
while k > 1:
|
||||
k = k // 2
|
||||
G = polynomial_multiply_mod(G, G, polymod, p)
|
||||
if k % 2 == 1:
|
||||
s = polynomial_multiply_mod(G, s, polymod, p)
|
||||
|
||||
return s
|
||||
|
||||
|
||||
def jacobi(a, n):
|
||||
"""Jacobi symbol"""
|
||||
|
||||
# Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149.
|
||||
|
||||
# This function has been tested by comparison with a small
|
||||
# table printed in HAC, and by extensive use in calculating
|
||||
# modular square roots.
|
||||
|
||||
if not n >= 3:
|
||||
raise JacobiError("n must be larger than 2")
|
||||
if not n % 2 == 1:
|
||||
raise JacobiError("n must be odd")
|
||||
a = a % n
|
||||
if a == 0:
|
||||
return 0
|
||||
if a == 1:
|
||||
return 1
|
||||
a1, e = a, 0
|
||||
while a1 % 2 == 0:
|
||||
a1, e = a1 // 2, e + 1
|
||||
if e % 2 == 0 or n % 8 == 1 or n % 8 == 7:
|
||||
s = 1
|
||||
else:
|
||||
s = -1
|
||||
if a1 == 1:
|
||||
return s
|
||||
if n % 4 == 3 and a1 % 4 == 3:
|
||||
s = -s
|
||||
return s * jacobi(n % a1, a1)
|
||||
|
||||
|
||||
def square_root_mod_prime(a, p):
|
||||
"""Modular square root of a, mod p, p prime."""
|
||||
|
||||
# Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39.
|
||||
|
||||
# This module has been tested for all values in [0,p-1] for
|
||||
# every prime p from 3 to 1229.
|
||||
|
||||
assert 0 <= a < p
|
||||
assert 1 < p
|
||||
|
||||
if a == 0:
|
||||
return 0
|
||||
if p == 2:
|
||||
return a
|
||||
|
||||
jac = jacobi(a, p)
|
||||
if jac == -1:
|
||||
raise SquareRootError("%d has no square root modulo %d" % (a, p))
|
||||
|
||||
if p % 4 == 3:
|
||||
return pow(a, (p + 1) // 4, p)
|
||||
|
||||
if p % 8 == 5:
|
||||
d = pow(a, (p - 1) // 4, p)
|
||||
if d == 1:
|
||||
return pow(a, (p + 3) // 8, p)
|
||||
assert d == p - 1
|
||||
return (2 * a * pow(4 * a, (p - 5) // 8, p)) % p
|
||||
|
||||
if PY2:
|
||||
# xrange on python2 can take integers representable as C long only
|
||||
range_top = min(0x7FFFFFFF, p)
|
||||
else:
|
||||
range_top = p
|
||||
for b in xrange(2, range_top):
|
||||
if jacobi(b * b - 4 * a, p) == -1:
|
||||
f = (a, -b, 1)
|
||||
ff = polynomial_exp_mod((0, 1), (p + 1) // 2, f, p)
|
||||
if ff[1]:
|
||||
raise SquareRootError("p is not prime")
|
||||
return ff[0]
|
||||
raise RuntimeError("No b found.")
|
||||
|
||||
|
||||
# because all the inverse_mod code is arch/environment specific, and coveralls
|
||||
# expects it to execute equal number of times, we need to waive it by
|
||||
# adding the "no branch" pragma to all branches
|
||||
if GMPY2: # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
return powmod(a, -1, m)
|
||||
|
||||
elif GMPY: # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
# while libgmp does support inverses modulo, it is accessible
|
||||
# only using the native `pow()` function, and `pow()` in gmpy sanity
|
||||
# checks the parameters before passing them on to underlying
|
||||
# implementation
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
a = mpz(a)
|
||||
m = mpz(m)
|
||||
|
||||
lm, hm = mpz(1), mpz(0)
|
||||
low, high = a % m, m
|
||||
while low > 1: # pragma: no branch
|
||||
r = high // low
|
||||
lm, low, hm, high = hm - lm * r, high - low * r, lm, low
|
||||
|
||||
return lm % m
|
||||
|
||||
elif sys.version_info >= (3, 8): # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
return pow(a, -1, m)
|
||||
|
||||
else: # pragma: no branch
|
||||
|
||||
def inverse_mod(a, m):
|
||||
"""Inverse of a mod m."""
|
||||
|
||||
if a == 0: # pragma: no branch
|
||||
return 0
|
||||
|
||||
lm, hm = 1, 0
|
||||
low, high = a % m, m
|
||||
while low > 1: # pragma: no branch
|
||||
r = high // low
|
||||
lm, low, hm, high = hm - lm * r, high - low * r, lm, low
|
||||
|
||||
return lm % m
|
||||
|
||||
|
||||
try:
|
||||
gcd2 = math.gcd
|
||||
except AttributeError:
|
||||
|
||||
def gcd2(a, b):
|
||||
"""Greatest common divisor using Euclid's algorithm."""
|
||||
while a:
|
||||
a, b = b % a, a
|
||||
return b
|
||||
|
||||
|
||||
def gcd(*a):
|
||||
"""Greatest common divisor.
|
||||
|
||||
Usage: gcd([ 2, 4, 6 ])
|
||||
or: gcd(2, 4, 6)
|
||||
"""
|
||||
|
||||
if len(a) > 1:
|
||||
return reduce(gcd2, a)
|
||||
if hasattr(a[0], "__iter__"):
|
||||
return reduce(gcd2, a[0])
|
||||
return a[0]
|
||||
|
||||
|
||||
def lcm2(a, b):
|
||||
"""Least common multiple of two integers."""
|
||||
|
||||
return (a * b) // gcd(a, b)
|
||||
|
||||
|
||||
def lcm(*a):
|
||||
"""Least common multiple.
|
||||
|
||||
Usage: lcm([ 3, 4, 5 ])
|
||||
or: lcm(3, 4, 5)
|
||||
"""
|
||||
|
||||
if len(a) > 1:
|
||||
return reduce(lcm2, a)
|
||||
if hasattr(a[0], "__iter__"):
|
||||
return reduce(lcm2, a[0])
|
||||
return a[0]
|
||||
|
||||
|
||||
def factorization(n):
|
||||
"""Decompose n into a list of (prime,exponent) pairs."""
|
||||
|
||||
assert isinstance(n, integer_types)
|
||||
|
||||
if n < 2:
|
||||
return []
|
||||
|
||||
result = []
|
||||
|
||||
# Test the small primes:
|
||||
|
||||
for d in smallprimes:
|
||||
if d > n:
|
||||
break
|
||||
q, r = divmod(n, d)
|
||||
if r == 0:
|
||||
count = 1
|
||||
while d <= n:
|
||||
n = q
|
||||
q, r = divmod(n, d)
|
||||
if r != 0:
|
||||
break
|
||||
count = count + 1
|
||||
result.append((d, count))
|
||||
|
||||
# If n is still greater than the last of our small primes,
|
||||
# it may require further work:
|
||||
|
||||
if n > smallprimes[-1]:
|
||||
if is_prime(n): # If what's left is prime, it's easy:
|
||||
result.append((n, 1))
|
||||
else: # Ugh. Search stupidly for a divisor:
|
||||
d = smallprimes[-1]
|
||||
while 1:
|
||||
d = d + 2 # Try the next divisor.
|
||||
q, r = divmod(n, d)
|
||||
if q < d: # n < d*d means we're done, n = 1 or prime.
|
||||
break
|
||||
if r == 0: # d divides n. How many times?
|
||||
count = 1
|
||||
n = q
|
||||
while d <= n: # As long as d might still divide n,
|
||||
q, r = divmod(n, d) # see if it does.
|
||||
if r != 0:
|
||||
break
|
||||
n = q # It does. Reduce n, increase count.
|
||||
count = count + 1
|
||||
result.append((d, count))
|
||||
if n > 1:
|
||||
result.append((n, 1))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def phi(n): # pragma: no cover
|
||||
"""Return the Euler totient function of n."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
assert isinstance(n, integer_types)
|
||||
|
||||
if n < 3:
|
||||
return 1
|
||||
|
||||
result = 1
|
||||
ff = factorization(n)
|
||||
for f in ff:
|
||||
e = f[1]
|
||||
if e > 1:
|
||||
result = result * f[0] ** (e - 1) * (f[0] - 1)
|
||||
else:
|
||||
result = result * (f[0] - 1)
|
||||
return result
|
||||
|
||||
|
||||
def carmichael(n): # pragma: no cover
|
||||
"""Return Carmichael function of n.
|
||||
|
||||
Carmichael(n) is the smallest integer x such that
|
||||
m**x = 1 mod n for all m relatively prime to n.
|
||||
"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
return carmichael_of_factorized(factorization(n))
|
||||
|
||||
|
||||
def carmichael_of_factorized(f_list): # pragma: no cover
|
||||
"""Return the Carmichael function of a number that is
|
||||
represented as a list of (prime,exponent) pairs.
|
||||
"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
if len(f_list) < 1:
|
||||
return 1
|
||||
|
||||
result = carmichael_of_ppower(f_list[0])
|
||||
for i in xrange(1, len(f_list)):
|
||||
result = lcm(result, carmichael_of_ppower(f_list[i]))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def carmichael_of_ppower(pp): # pragma: no cover
|
||||
"""Carmichael function of the given power of the given prime."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
p, a = pp
|
||||
if p == 2 and a > 2:
|
||||
return 2 ** (a - 2)
|
||||
else:
|
||||
return (p - 1) * p ** (a - 1)
|
||||
|
||||
|
||||
def order_mod(x, m): # pragma: no cover
|
||||
"""Return the order of x in the multiplicative group mod m."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
# Warning: this implementation is not very clever, and will
|
||||
# take a long time if m is very large.
|
||||
|
||||
if m <= 1:
|
||||
return 0
|
||||
|
||||
assert gcd(x, m) == 1
|
||||
|
||||
z = x
|
||||
result = 1
|
||||
while z != 1:
|
||||
z = (z * x) % m
|
||||
result = result + 1
|
||||
return result
|
||||
|
||||
|
||||
def largest_factor_relatively_prime(a, b): # pragma: no cover
|
||||
"""Return the largest factor of a relatively prime to b."""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
while 1:
|
||||
d = gcd(a, b)
|
||||
if d <= 1:
|
||||
break
|
||||
b = d
|
||||
while 1:
|
||||
q, r = divmod(a, d)
|
||||
if r > 0:
|
||||
break
|
||||
a = q
|
||||
return a
|
||||
|
||||
|
||||
def kinda_order_mod(x, m): # pragma: no cover
|
||||
"""Return the order of x in the multiplicative group mod m',
|
||||
where m' is the largest factor of m relatively prime to x.
|
||||
"""
|
||||
# deprecated in 0.14
|
||||
warnings.warn(
|
||||
"Function is unused by library code. If you use this code, "
|
||||
"please open an issue in "
|
||||
"https://github.com/tlsfuzzer/python-ecdsa",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
return order_mod(x, largest_factor_relatively_prime(m, x))
|
||||
|
||||
|
||||
def is_prime(n):
|
||||
"""Return True if x is prime, False otherwise.
|
||||
|
||||
We use the Miller-Rabin test, as given in Menezes et al. p. 138.
|
||||
This test is not exact: there are composite values n for which
|
||||
it returns True.
|
||||
|
||||
In testing the odd numbers from 10000001 to 19999999,
|
||||
about 66 composites got past the first test,
|
||||
5 got past the second test, and none got past the third.
|
||||
Since factors of 2, 3, 5, 7, and 11 were detected during
|
||||
preliminary screening, the number of numbers tested by
|
||||
Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7)
|
||||
= 4.57 million.
|
||||
"""
|
||||
|
||||
# (This is used to study the risk of false positives:)
|
||||
global miller_rabin_test_count
|
||||
|
||||
miller_rabin_test_count = 0
|
||||
|
||||
if n <= smallprimes[-1]:
|
||||
if n in smallprimes:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
if gcd(n, 2 * 3 * 5 * 7 * 11) != 1:
|
||||
return False
|
||||
|
||||
# Choose a number of iterations sufficient to reduce the
|
||||
# probability of accepting a composite below 2**-80
|
||||
# (from Menezes et al. Table 4.4):
|
||||
|
||||
t = 40
|
||||
n_bits = 1 + int(math.log(n, 2))
|
||||
for k, tt in (
|
||||
(100, 27),
|
||||
(150, 18),
|
||||
(200, 15),
|
||||
(250, 12),
|
||||
(300, 9),
|
||||
(350, 8),
|
||||
(400, 7),
|
||||
(450, 6),
|
||||
(550, 5),
|
||||
(650, 4),
|
||||
(850, 3),
|
||||
(1300, 2),
|
||||
):
|
||||
if n_bits < k:
|
||||
break
|
||||
t = tt
|
||||
|
||||
# Run the test t times:
|
||||
|
||||
s = 0
|
||||
r = n - 1
|
||||
while (r % 2) == 0:
|
||||
s = s + 1
|
||||
r = r // 2
|
||||
for i in xrange(t):
|
||||
a = smallprimes[i]
|
||||
y = pow(a, r, n)
|
||||
if y != 1 and y != n - 1:
|
||||
j = 1
|
||||
while j <= s - 1 and y != n - 1:
|
||||
y = pow(y, 2, n)
|
||||
if y == 1:
|
||||
miller_rabin_test_count = i + 1
|
||||
return False
|
||||
j = j + 1
|
||||
if y != n - 1:
|
||||
miller_rabin_test_count = i + 1
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def next_prime(starting_value):
|
||||
"""Return the smallest prime larger than the starting value."""
|
||||
|
||||
if starting_value < 2:
|
||||
return 2
|
||||
result = (starting_value + 1) | 1
|
||||
while not is_prime(result):
|
||||
result = result + 2
|
||||
return result
|
||||
|
||||
|
||||
smallprimes = [
|
||||
2,
|
||||
3,
|
||||
5,
|
||||
7,
|
||||
11,
|
||||
13,
|
||||
17,
|
||||
19,
|
||||
23,
|
||||
29,
|
||||
31,
|
||||
37,
|
||||
41,
|
||||
43,
|
||||
47,
|
||||
53,
|
||||
59,
|
||||
61,
|
||||
67,
|
||||
71,
|
||||
73,
|
||||
79,
|
||||
83,
|
||||
89,
|
||||
97,
|
||||
101,
|
||||
103,
|
||||
107,
|
||||
109,
|
||||
113,
|
||||
127,
|
||||
131,
|
||||
137,
|
||||
139,
|
||||
149,
|
||||
151,
|
||||
157,
|
||||
163,
|
||||
167,
|
||||
173,
|
||||
179,
|
||||
181,
|
||||
191,
|
||||
193,
|
||||
197,
|
||||
199,
|
||||
211,
|
||||
223,
|
||||
227,
|
||||
229,
|
||||
233,
|
||||
239,
|
||||
241,
|
||||
251,
|
||||
257,
|
||||
263,
|
||||
269,
|
||||
271,
|
||||
277,
|
||||
281,
|
||||
283,
|
||||
293,
|
||||
307,
|
||||
311,
|
||||
313,
|
||||
317,
|
||||
331,
|
||||
337,
|
||||
347,
|
||||
349,
|
||||
353,
|
||||
359,
|
||||
367,
|
||||
373,
|
||||
379,
|
||||
383,
|
||||
389,
|
||||
397,
|
||||
401,
|
||||
409,
|
||||
419,
|
||||
421,
|
||||
431,
|
||||
433,
|
||||
439,
|
||||
443,
|
||||
449,
|
||||
457,
|
||||
461,
|
||||
463,
|
||||
467,
|
||||
479,
|
||||
487,
|
||||
491,
|
||||
499,
|
||||
503,
|
||||
509,
|
||||
521,
|
||||
523,
|
||||
541,
|
||||
547,
|
||||
557,
|
||||
563,
|
||||
569,
|
||||
571,
|
||||
577,
|
||||
587,
|
||||
593,
|
||||
599,
|
||||
601,
|
||||
607,
|
||||
613,
|
||||
617,
|
||||
619,
|
||||
631,
|
||||
641,
|
||||
643,
|
||||
647,
|
||||
653,
|
||||
659,
|
||||
661,
|
||||
673,
|
||||
677,
|
||||
683,
|
||||
691,
|
||||
701,
|
||||
709,
|
||||
719,
|
||||
727,
|
||||
733,
|
||||
739,
|
||||
743,
|
||||
751,
|
||||
757,
|
||||
761,
|
||||
769,
|
||||
773,
|
||||
787,
|
||||
797,
|
||||
809,
|
||||
811,
|
||||
821,
|
||||
823,
|
||||
827,
|
||||
829,
|
||||
839,
|
||||
853,
|
||||
857,
|
||||
859,
|
||||
863,
|
||||
877,
|
||||
881,
|
||||
883,
|
||||
887,
|
||||
907,
|
||||
911,
|
||||
919,
|
||||
929,
|
||||
937,
|
||||
941,
|
||||
947,
|
||||
953,
|
||||
967,
|
||||
971,
|
||||
977,
|
||||
983,
|
||||
991,
|
||||
997,
|
||||
1009,
|
||||
1013,
|
||||
1019,
|
||||
1021,
|
||||
1031,
|
||||
1033,
|
||||
1039,
|
||||
1049,
|
||||
1051,
|
||||
1061,
|
||||
1063,
|
||||
1069,
|
||||
1087,
|
||||
1091,
|
||||
1093,
|
||||
1097,
|
||||
1103,
|
||||
1109,
|
||||
1117,
|
||||
1123,
|
||||
1129,
|
||||
1151,
|
||||
1153,
|
||||
1163,
|
||||
1171,
|
||||
1181,
|
||||
1187,
|
||||
1193,
|
||||
1201,
|
||||
1213,
|
||||
1217,
|
||||
1223,
|
||||
1229,
|
||||
]
|
||||
|
||||
miller_rabin_test_count = 0
|
||||
113
dist/ba_data/python-site-packages/ecdsa/rfc6979.py
vendored
113
dist/ba_data/python-site-packages/ecdsa/rfc6979.py
vendored
|
|
@ -1,113 +0,0 @@
|
|||
"""
|
||||
RFC 6979:
|
||||
Deterministic Usage of the Digital Signature Algorithm (DSA) and
|
||||
Elliptic Curve Digital Signature Algorithm (ECDSA)
|
||||
|
||||
http://tools.ietf.org/html/rfc6979
|
||||
|
||||
Many thanks to Coda Hale for his implementation in Go language:
|
||||
https://github.com/codahale/rfc6979
|
||||
"""
|
||||
|
||||
import hmac
|
||||
from binascii import hexlify
|
||||
from .util import number_to_string, number_to_string_crop, bit_length
|
||||
from ._compat import hmac_compat
|
||||
|
||||
|
||||
# bit_length was defined in this module previously so keep it for backwards
|
||||
# compatibility, will need to deprecate and remove it later
|
||||
__all__ = ["bit_length", "bits2int", "bits2octets", "generate_k"]
|
||||
|
||||
|
||||
def bits2int(data, qlen):
|
||||
x = int(hexlify(data), 16)
|
||||
l = len(data) * 8
|
||||
|
||||
if l > qlen:
|
||||
return x >> (l - qlen)
|
||||
return x
|
||||
|
||||
|
||||
def bits2octets(data, order):
|
||||
z1 = bits2int(data, bit_length(order))
|
||||
z2 = z1 - order
|
||||
|
||||
if z2 < 0:
|
||||
z2 = z1
|
||||
|
||||
return number_to_string_crop(z2, order)
|
||||
|
||||
|
||||
# https://tools.ietf.org/html/rfc6979#section-3.2
|
||||
def generate_k(order, secexp, hash_func, data, retry_gen=0, extra_entropy=b""):
|
||||
"""
|
||||
Generate the ``k`` value - the nonce for DSA.
|
||||
|
||||
:param int order: order of the DSA generator used in the signature
|
||||
:param int secexp: secure exponent (private key) in numeric form
|
||||
:param hash_func: reference to the same hash function used for generating
|
||||
hash, like :py:class:`hashlib.sha1`
|
||||
:param bytes data: hash in binary form of the signing data
|
||||
:param int retry_gen: how many good 'k' values to skip before returning
|
||||
:param bytes extra_entropy: additional added data in binary form as per
|
||||
section-3.6 of rfc6979
|
||||
:rtype: int
|
||||
"""
|
||||
|
||||
qlen = bit_length(order)
|
||||
holen = hash_func().digest_size
|
||||
rolen = (qlen + 7) // 8
|
||||
bx = (
|
||||
hmac_compat(number_to_string(secexp, order)),
|
||||
hmac_compat(bits2octets(data, order)),
|
||||
hmac_compat(extra_entropy),
|
||||
)
|
||||
|
||||
# Step B
|
||||
v = b"\x01" * holen
|
||||
|
||||
# Step C
|
||||
k = b"\x00" * holen
|
||||
|
||||
# Step D
|
||||
|
||||
k = hmac.new(k, digestmod=hash_func)
|
||||
k.update(v + b"\x00")
|
||||
for i in bx:
|
||||
k.update(i)
|
||||
k = k.digest()
|
||||
|
||||
# Step E
|
||||
v = hmac.new(k, v, hash_func).digest()
|
||||
|
||||
# Step F
|
||||
k = hmac.new(k, digestmod=hash_func)
|
||||
k.update(v + b"\x01")
|
||||
for i in bx:
|
||||
k.update(i)
|
||||
k = k.digest()
|
||||
|
||||
# Step G
|
||||
v = hmac.new(k, v, hash_func).digest()
|
||||
|
||||
# Step H
|
||||
while True:
|
||||
# Step H1
|
||||
t = b""
|
||||
|
||||
# Step H2
|
||||
while len(t) < rolen:
|
||||
v = hmac.new(k, v, hash_func).digest()
|
||||
t += v
|
||||
|
||||
# Step H3
|
||||
secret = bits2int(t, qlen)
|
||||
|
||||
if 1 <= secret < order:
|
||||
if retry_gen <= 0:
|
||||
return secret
|
||||
retry_gen -= 1
|
||||
|
||||
k = hmac.new(k, v + b"\x00", hash_func).digest()
|
||||
v = hmac.new(k, v, hash_func).digest()
|
||||
|
|
@ -1,361 +0,0 @@
|
|||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
|
||||
import base64
|
||||
import pytest
|
||||
from .curves import (
|
||||
Curve,
|
||||
NIST256p,
|
||||
curves,
|
||||
UnknownCurveError,
|
||||
PRIME_FIELD_OID,
|
||||
curve_by_name,
|
||||
)
|
||||
from .ellipticcurve import CurveFp, PointJacobi, CurveEdTw
|
||||
from . import der
|
||||
from .util import number_to_string
|
||||
|
||||
|
||||
class TestParameterEncoding(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
# minimal, but with cofactor (excludes seed when compared to
|
||||
# OpenSSL output)
|
||||
cls.base64_params = (
|
||||
"MIHgAgEBMCwGByqGSM49AQECIQD/////AAAAAQAAAAAAAAAAAAAAAP/////////"
|
||||
"//////zBEBCD/////AAAAAQAAAAAAAAAAAAAAAP///////////////AQgWsY12K"
|
||||
"o6k+ez671VdpiGvGUdBrDMU7D2O848PifSYEsEQQRrF9Hy4SxCR/i85uVjpEDyd"
|
||||
"wN9gS3rM6D0oTlF2JjClk/jQuL+Gn+bjufrSnwPnhYrzjNXazFezsu2QGg3v1H1"
|
||||
"AiEA/////wAAAAD//////////7zm+q2nF56E87nKwvxjJVECAQE="
|
||||
)
|
||||
|
||||
def test_from_pem(self):
|
||||
pem_params = (
|
||||
"-----BEGIN EC PARAMETERS-----\n"
|
||||
"MIHgAgEBMCwGByqGSM49AQECIQD/////AAAAAQAAAAAAAAAAAAAAAP/////////\n"
|
||||
"//////zBEBCD/////AAAAAQAAAAAAAAAAAAAAAP///////////////AQgWsY12K\n"
|
||||
"o6k+ez671VdpiGvGUdBrDMU7D2O848PifSYEsEQQRrF9Hy4SxCR/i85uVjpEDyd\n"
|
||||
"wN9gS3rM6D0oTlF2JjClk/jQuL+Gn+bjufrSnwPnhYrzjNXazFezsu2QGg3v1H1\n"
|
||||
"AiEA/////wAAAAD//////////7zm+q2nF56E87nKwvxjJVECAQE=\n"
|
||||
"-----END EC PARAMETERS-----\n"
|
||||
)
|
||||
curve = Curve.from_pem(pem_params)
|
||||
|
||||
self.assertIs(curve, NIST256p)
|
||||
|
||||
def test_from_pem_with_explicit_when_explicit_disabled(self):
|
||||
pem_params = (
|
||||
"-----BEGIN EC PARAMETERS-----\n"
|
||||
"MIHgAgEBMCwGByqGSM49AQECIQD/////AAAAAQAAAAAAAAAAAAAAAP/////////\n"
|
||||
"//////zBEBCD/////AAAAAQAAAAAAAAAAAAAAAP///////////////AQgWsY12K\n"
|
||||
"o6k+ez671VdpiGvGUdBrDMU7D2O848PifSYEsEQQRrF9Hy4SxCR/i85uVjpEDyd\n"
|
||||
"wN9gS3rM6D0oTlF2JjClk/jQuL+Gn+bjufrSnwPnhYrzjNXazFezsu2QGg3v1H1\n"
|
||||
"AiEA/////wAAAAD//////////7zm+q2nF56E87nKwvxjJVECAQE=\n"
|
||||
"-----END EC PARAMETERS-----\n"
|
||||
)
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_pem(pem_params, ["named_curve"])
|
||||
|
||||
self.assertIn("explicit curve parameters not", str(e.exception))
|
||||
|
||||
def test_from_pem_with_named_curve_with_named_curve_disabled(self):
|
||||
pem_params = (
|
||||
"-----BEGIN EC PARAMETERS-----\n"
|
||||
"BggqhkjOPQMBBw==\n"
|
||||
"-----END EC PARAMETERS-----\n"
|
||||
)
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_pem(pem_params, ["explicit"])
|
||||
|
||||
self.assertIn("named_curve curve parameters not", str(e.exception))
|
||||
|
||||
def test_from_pem_with_wrong_header(self):
|
||||
pem_params = (
|
||||
"-----BEGIN PARAMETERS-----\n"
|
||||
"MIHgAgEBMCwGByqGSM49AQECIQD/////AAAAAQAAAAAAAAAAAAAAAP/////////\n"
|
||||
"//////zBEBCD/////AAAAAQAAAAAAAAAAAAAAAP///////////////AQgWsY12K\n"
|
||||
"o6k+ez671VdpiGvGUdBrDMU7D2O848PifSYEsEQQRrF9Hy4SxCR/i85uVjpEDyd\n"
|
||||
"wN9gS3rM6D0oTlF2JjClk/jQuL+Gn+bjufrSnwPnhYrzjNXazFezsu2QGg3v1H1\n"
|
||||
"AiEA/////wAAAAD//////////7zm+q2nF56E87nKwvxjJVECAQE=\n"
|
||||
"-----END PARAMETERS-----\n"
|
||||
)
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_pem(pem_params)
|
||||
|
||||
self.assertIn("PARAMETERS PEM header", str(e.exception))
|
||||
|
||||
def test_to_pem(self):
|
||||
pem_params = (
|
||||
b"-----BEGIN EC PARAMETERS-----\n"
|
||||
b"BggqhkjOPQMBBw==\n"
|
||||
b"-----END EC PARAMETERS-----\n"
|
||||
)
|
||||
encoding = NIST256p.to_pem()
|
||||
|
||||
self.assertEqual(pem_params, encoding)
|
||||
|
||||
def test_compare_with_different_object(self):
|
||||
self.assertNotEqual(NIST256p, 256)
|
||||
|
||||
def test_named_curve_params_der(self):
|
||||
encoded = NIST256p.to_der()
|
||||
|
||||
# just the encoding of the NIST256p OID (prime256v1)
|
||||
self.assertEqual(b"\x06\x08\x2a\x86\x48\xce\x3d\x03\x01\x07", encoded)
|
||||
|
||||
def test_verify_that_default_is_named_curve_der(self):
|
||||
encoded_default = NIST256p.to_der()
|
||||
encoded_named = NIST256p.to_der("named_curve")
|
||||
|
||||
self.assertEqual(encoded_default, encoded_named)
|
||||
|
||||
def test_encoding_to_explicit_params(self):
|
||||
encoded = NIST256p.to_der("explicit")
|
||||
|
||||
self.assertEqual(encoded, bytes(base64.b64decode(self.base64_params)))
|
||||
|
||||
def test_encoding_to_unsupported_type(self):
|
||||
with self.assertRaises(ValueError) as e:
|
||||
NIST256p.to_der("unsupported")
|
||||
|
||||
self.assertIn("Only 'named_curve'", str(e.exception))
|
||||
|
||||
def test_encoding_to_explicit_compressed_params(self):
|
||||
encoded = NIST256p.to_der("explicit", "compressed")
|
||||
|
||||
compressed_base_point = (
|
||||
"MIHAAgEBMCwGByqGSM49AQECIQD/////AAAAAQAAAAAAAAAAAAAAAP//////////"
|
||||
"/////zBEBCD/////AAAAAQAAAAAAAAAAAAAAAP///////////////AQgWsY12Ko6"
|
||||
"k+ez671VdpiGvGUdBrDMU7D2O848PifSYEsEIQNrF9Hy4SxCR/i85uVjpEDydwN9"
|
||||
"gS3rM6D0oTlF2JjClgIhAP////8AAAAA//////////+85vqtpxeehPO5ysL8YyVR"
|
||||
"AgEB"
|
||||
)
|
||||
|
||||
self.assertEqual(
|
||||
encoded, bytes(base64.b64decode(compressed_base_point))
|
||||
)
|
||||
|
||||
def test_decoding_explicit_from_openssl(self):
|
||||
# generated with openssl 1.1.1k using
|
||||
# openssl ecparam -name P-256 -param_enc explicit -out /tmp/file.pem
|
||||
p256_explicit = (
|
||||
"MIH3AgEBMCwGByqGSM49AQECIQD/////AAAAAQAAAAAAAAAAAAAAAP//////////"
|
||||
"/////zBbBCD/////AAAAAQAAAAAAAAAAAAAAAP///////////////AQgWsY12Ko6"
|
||||
"k+ez671VdpiGvGUdBrDMU7D2O848PifSYEsDFQDEnTYIhucEk2pmeOETnSa3gZ9+"
|
||||
"kARBBGsX0fLhLEJH+Lzm5WOkQPJ3A32BLeszoPShOUXYmMKWT+NC4v4af5uO5+tK"
|
||||
"fA+eFivOM1drMV7Oy7ZAaDe/UfUCIQD/////AAAAAP//////////vOb6racXnoTz"
|
||||
"ucrC/GMlUQIBAQ=="
|
||||
)
|
||||
|
||||
decoded = Curve.from_der(bytes(base64.b64decode(p256_explicit)))
|
||||
|
||||
self.assertEqual(NIST256p, decoded)
|
||||
|
||||
def test_decoding_well_known_from_explicit_params(self):
|
||||
curve = Curve.from_der(bytes(base64.b64decode(self.base64_params)))
|
||||
|
||||
self.assertIs(curve, NIST256p)
|
||||
|
||||
def test_decoding_with_incorrect_valid_encodings(self):
|
||||
with self.assertRaises(ValueError) as e:
|
||||
Curve.from_der(b"", ["explicitCA"])
|
||||
|
||||
self.assertIn("Only named_curve", str(e.exception))
|
||||
|
||||
def test_compare_curves_with_different_generators(self):
|
||||
curve_fp = CurveFp(23, 1, 7)
|
||||
base_a = PointJacobi(curve_fp, 13, 3, 1, 9, generator=True)
|
||||
base_b = PointJacobi(curve_fp, 1, 20, 1, 9, generator=True)
|
||||
|
||||
curve_a = Curve("unknown", curve_fp, base_a, None)
|
||||
curve_b = Curve("unknown", curve_fp, base_b, None)
|
||||
|
||||
self.assertNotEqual(curve_a, curve_b)
|
||||
|
||||
def test_default_encode_for_custom_curve(self):
|
||||
curve_fp = CurveFp(23, 1, 7)
|
||||
base_point = PointJacobi(curve_fp, 13, 3, 1, 9, generator=True)
|
||||
|
||||
curve = Curve("unknown", curve_fp, base_point, None)
|
||||
|
||||
encoded = curve.to_der()
|
||||
|
||||
decoded = Curve.from_der(encoded)
|
||||
|
||||
self.assertEqual(curve, decoded)
|
||||
|
||||
expected = "MCECAQEwDAYHKoZIzj0BAQIBFzAGBAEBBAEHBAMEDQMCAQk="
|
||||
|
||||
self.assertEqual(encoded, bytes(base64.b64decode(expected)))
|
||||
|
||||
def test_named_curve_encode_for_custom_curve(self):
|
||||
curve_fp = CurveFp(23, 1, 7)
|
||||
base_point = PointJacobi(curve_fp, 13, 3, 1, 9, generator=True)
|
||||
|
||||
curve = Curve("unknown", curve_fp, base_point, None)
|
||||
|
||||
with self.assertRaises(UnknownCurveError) as e:
|
||||
curve.to_der("named_curve")
|
||||
|
||||
self.assertIn("Can't encode curve", str(e.exception))
|
||||
|
||||
def test_try_decoding_binary_explicit(self):
|
||||
sect113r1_explicit = (
|
||||
"MIGRAgEBMBwGByqGSM49AQIwEQIBcQYJKoZIzj0BAgMCAgEJMDkEDwAwiCUMpufH"
|
||||
"/mSc6Fgg9wQPAOi+5NPiJgdEGIvg6ccjAxUAEOcjqxTWluZ2h1YVF1b+v4/LSakE"
|
||||
"HwQAnXNhbzX0qxQH1zViwQ8ApSgwJ3lY7oTRMV7TGIYCDwEAAAAAAAAA2czsijnl"
|
||||
"bwIBAg=="
|
||||
)
|
||||
|
||||
with self.assertRaises(UnknownCurveError) as e:
|
||||
Curve.from_der(base64.b64decode(sect113r1_explicit))
|
||||
|
||||
self.assertIn("Characteristic 2 curves unsupported", str(e.exception))
|
||||
|
||||
def test_decode_malformed_named_curve(self):
|
||||
bad_der = der.encode_oid(*NIST256p.oid) + der.encode_integer(1)
|
||||
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_der(bad_der)
|
||||
|
||||
self.assertIn("Unexpected data after OID", str(e.exception))
|
||||
|
||||
def test_decode_malformed_explicit_garbage_after_ECParam(self):
|
||||
bad_der = bytes(
|
||||
base64.b64decode(self.base64_params)
|
||||
) + der.encode_integer(1)
|
||||
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_der(bad_der)
|
||||
|
||||
self.assertIn("Unexpected data after ECParameters", str(e.exception))
|
||||
|
||||
def test_decode_malformed_unknown_version_number(self):
|
||||
bad_der = der.encode_sequence(der.encode_integer(2))
|
||||
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_der(bad_der)
|
||||
|
||||
self.assertIn("Unknown parameter encoding format", str(e.exception))
|
||||
|
||||
def test_decode_malformed_unknown_field_type(self):
|
||||
curve_p = NIST256p.curve.p()
|
||||
bad_der = der.encode_sequence(
|
||||
der.encode_integer(1),
|
||||
der.encode_sequence(
|
||||
der.encode_oid(1, 2, 3), der.encode_integer(curve_p)
|
||||
),
|
||||
der.encode_sequence(
|
||||
der.encode_octet_string(
|
||||
number_to_string(NIST256p.curve.a() % curve_p, curve_p)
|
||||
),
|
||||
der.encode_octet_string(
|
||||
number_to_string(NIST256p.curve.b(), curve_p)
|
||||
),
|
||||
),
|
||||
der.encode_octet_string(
|
||||
NIST256p.generator.to_bytes("uncompressed")
|
||||
),
|
||||
der.encode_integer(NIST256p.generator.order()),
|
||||
)
|
||||
|
||||
with self.assertRaises(UnknownCurveError) as e:
|
||||
Curve.from_der(bad_der)
|
||||
|
||||
self.assertIn("Unknown field type: (1, 2, 3)", str(e.exception))
|
||||
|
||||
def test_decode_malformed_garbage_after_prime(self):
|
||||
curve_p = NIST256p.curve.p()
|
||||
bad_der = der.encode_sequence(
|
||||
der.encode_integer(1),
|
||||
der.encode_sequence(
|
||||
der.encode_oid(*PRIME_FIELD_OID),
|
||||
der.encode_integer(curve_p),
|
||||
der.encode_integer(1),
|
||||
),
|
||||
der.encode_sequence(
|
||||
der.encode_octet_string(
|
||||
number_to_string(NIST256p.curve.a() % curve_p, curve_p)
|
||||
),
|
||||
der.encode_octet_string(
|
||||
number_to_string(NIST256p.curve.b(), curve_p)
|
||||
),
|
||||
),
|
||||
der.encode_octet_string(
|
||||
NIST256p.generator.to_bytes("uncompressed")
|
||||
),
|
||||
der.encode_integer(NIST256p.generator.order()),
|
||||
)
|
||||
|
||||
with self.assertRaises(der.UnexpectedDER) as e:
|
||||
Curve.from_der(bad_der)
|
||||
|
||||
self.assertIn("Prime-p element", str(e.exception))
|
||||
|
||||
|
||||
class TestCurveSearching(unittest.TestCase):
|
||||
def test_correct_name(self):
|
||||
c = curve_by_name("NIST256p")
|
||||
self.assertIs(c, NIST256p)
|
||||
|
||||
def test_openssl_name(self):
|
||||
c = curve_by_name("prime256v1")
|
||||
self.assertIs(c, NIST256p)
|
||||
|
||||
def test_unknown_curve(self):
|
||||
with self.assertRaises(UnknownCurveError) as e:
|
||||
curve_by_name("foo bar")
|
||||
|
||||
self.assertIn(
|
||||
"name 'foo bar' unknown, only curves supported: "
|
||||
"['NIST192p', 'NIST224p'",
|
||||
str(e.exception),
|
||||
)
|
||||
|
||||
def test_with_None_as_parameter(self):
|
||||
with self.assertRaises(UnknownCurveError) as e:
|
||||
curve_by_name(None)
|
||||
|
||||
self.assertIn(
|
||||
"name None unknown, only curves supported: "
|
||||
"['NIST192p', 'NIST224p'",
|
||||
str(e.exception),
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("curve", curves, ids=[i.name for i in curves])
|
||||
def test_curve_params_encode_decode_named(curve):
|
||||
ret = Curve.from_der(curve.to_der("named_curve"))
|
||||
|
||||
assert curve == ret
|
||||
|
||||
|
||||
@pytest.mark.parametrize("curve", curves, ids=[i.name for i in curves])
|
||||
def test_curve_params_encode_decode_explicit(curve):
|
||||
if isinstance(curve.curve, CurveEdTw):
|
||||
with pytest.raises(UnknownCurveError):
|
||||
curve.to_der("explicit")
|
||||
else:
|
||||
ret = Curve.from_der(curve.to_der("explicit"))
|
||||
|
||||
assert curve == ret
|
||||
|
||||
|
||||
@pytest.mark.parametrize("curve", curves, ids=[i.name for i in curves])
|
||||
def test_curve_params_encode_decode_default(curve):
|
||||
ret = Curve.from_der(curve.to_der())
|
||||
|
||||
assert curve == ret
|
||||
|
||||
|
||||
@pytest.mark.parametrize("curve", curves, ids=[i.name for i in curves])
|
||||
def test_curve_params_encode_decode_explicit_compressed(curve):
|
||||
if isinstance(curve.curve, CurveEdTw):
|
||||
with pytest.raises(UnknownCurveError):
|
||||
curve.to_der("explicit", "compressed")
|
||||
else:
|
||||
ret = Curve.from_der(curve.to_der("explicit", "compressed"))
|
||||
|
||||
assert curve == ret
|
||||
476
dist/ba_data/python-site-packages/ecdsa/test_der.py
vendored
476
dist/ba_data/python-site-packages/ecdsa/test_der.py
vendored
|
|
@ -1,476 +0,0 @@
|
|||
# compatibility with Python 2.6, for that we need unittest2 package,
|
||||
# which is not available on 3.3 or 3.4
|
||||
import warnings
|
||||
from binascii import hexlify
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
from six import b
|
||||
import hypothesis.strategies as st
|
||||
from hypothesis import given
|
||||
import pytest
|
||||
from ._compat import str_idx_as_int
|
||||
from .curves import NIST256p, NIST224p
|
||||
from .der import (
|
||||
remove_integer,
|
||||
UnexpectedDER,
|
||||
read_length,
|
||||
encode_bitstring,
|
||||
remove_bitstring,
|
||||
remove_object,
|
||||
encode_oid,
|
||||
remove_constructed,
|
||||
remove_octet_string,
|
||||
remove_sequence,
|
||||
)
|
||||
|
||||
|
||||
class TestRemoveInteger(unittest.TestCase):
|
||||
# DER requires the integers to be 0-padded only if they would be
|
||||
# interpreted as negative, check if those errors are detected
|
||||
def test_non_minimal_encoding(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_integer(b("\x02\x02\x00\x01"))
|
||||
|
||||
def test_negative_with_high_bit_set(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_integer(b("\x02\x01\x80"))
|
||||
|
||||
def test_minimal_with_high_bit_set(self):
|
||||
val, rem = remove_integer(b("\x02\x02\x00\x80"))
|
||||
|
||||
self.assertEqual(val, 0x80)
|
||||
self.assertEqual(rem, b"")
|
||||
|
||||
def test_two_zero_bytes_with_high_bit_set(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_integer(b("\x02\x03\x00\x00\xff"))
|
||||
|
||||
def test_zero_length_integer(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_integer(b("\x02\x00"))
|
||||
|
||||
def test_empty_string(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_integer(b(""))
|
||||
|
||||
def test_encoding_of_zero(self):
|
||||
val, rem = remove_integer(b("\x02\x01\x00"))
|
||||
|
||||
self.assertEqual(val, 0)
|
||||
self.assertEqual(rem, b"")
|
||||
|
||||
def test_encoding_of_127(self):
|
||||
val, rem = remove_integer(b("\x02\x01\x7f"))
|
||||
|
||||
self.assertEqual(val, 127)
|
||||
self.assertEqual(rem, b"")
|
||||
|
||||
def test_encoding_of_128(self):
|
||||
val, rem = remove_integer(b("\x02\x02\x00\x80"))
|
||||
|
||||
self.assertEqual(val, 128)
|
||||
self.assertEqual(rem, b"")
|
||||
|
||||
def test_wrong_tag(self):
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_integer(b"\x01\x02\x00\x80")
|
||||
|
||||
self.assertIn("wanted type 'integer'", str(e.exception))
|
||||
|
||||
def test_wrong_length(self):
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_integer(b"\x02\x03\x00\x80")
|
||||
|
||||
self.assertIn("Length longer", str(e.exception))
|
||||
|
||||
|
||||
class TestReadLength(unittest.TestCase):
|
||||
# DER requires the lengths between 0 and 127 to be encoded using the short
|
||||
# form and lengths above that encoded with minimal number of bytes
|
||||
# necessary
|
||||
def test_zero_length(self):
|
||||
self.assertEqual((0, 1), read_length(b("\x00")))
|
||||
|
||||
def test_two_byte_zero_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
read_length(b("\x81\x00"))
|
||||
|
||||
def test_two_byte_small_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
read_length(b("\x81\x7f"))
|
||||
|
||||
def test_long_form_with_zero_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
read_length(b("\x80"))
|
||||
|
||||
def test_smallest_two_byte_length(self):
|
||||
self.assertEqual((128, 2), read_length(b("\x81\x80")))
|
||||
|
||||
def test_zero_padded_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
read_length(b("\x82\x00\x80"))
|
||||
|
||||
def test_two_three_byte_length(self):
|
||||
self.assertEqual((256, 3), read_length(b"\x82\x01\x00"))
|
||||
|
||||
def test_empty_string(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
read_length(b(""))
|
||||
|
||||
def test_length_overflow(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
read_length(b("\x83\x01\x00"))
|
||||
|
||||
|
||||
class TestEncodeBitstring(unittest.TestCase):
|
||||
# DER requires BIT STRINGS to include a number of padding bits in the
|
||||
# encoded byte string, that padding must be between 0 and 7
|
||||
|
||||
def test_old_call_convention(self):
|
||||
"""This is the old way to use the function."""
|
||||
warnings.simplefilter("always")
|
||||
with pytest.warns(DeprecationWarning) as warns:
|
||||
der = encode_bitstring(b"\x00\xff")
|
||||
|
||||
self.assertEqual(len(warns), 1)
|
||||
self.assertIn(
|
||||
"unused= needs to be specified", warns[0].message.args[0]
|
||||
)
|
||||
|
||||
self.assertEqual(der, b"\x03\x02\x00\xff")
|
||||
|
||||
def test_new_call_convention(self):
|
||||
"""This is how it should be called now."""
|
||||
warnings.simplefilter("always")
|
||||
with pytest.warns(None) as warns:
|
||||
der = encode_bitstring(b"\xff", 0)
|
||||
|
||||
# verify that new call convention doesn't raise Warnings
|
||||
self.assertEqual(len(warns), 0)
|
||||
|
||||
self.assertEqual(der, b"\x03\x02\x00\xff")
|
||||
|
||||
def test_implicit_unused_bits(self):
|
||||
"""
|
||||
Writing bit string with already included the number of unused bits.
|
||||
"""
|
||||
warnings.simplefilter("always")
|
||||
with pytest.warns(None) as warns:
|
||||
der = encode_bitstring(b"\x00\xff", None)
|
||||
|
||||
# verify that new call convention doesn't raise Warnings
|
||||
self.assertEqual(len(warns), 0)
|
||||
|
||||
self.assertEqual(der, b"\x03\x02\x00\xff")
|
||||
|
||||
def test_explicit_unused_bits(self):
|
||||
der = encode_bitstring(b"\xff\xf0", 4)
|
||||
|
||||
self.assertEqual(der, b"\x03\x03\x04\xff\xf0")
|
||||
|
||||
def test_empty_string(self):
|
||||
self.assertEqual(encode_bitstring(b"", 0), b"\x03\x01\x00")
|
||||
|
||||
def test_invalid_unused_count(self):
|
||||
with self.assertRaises(ValueError):
|
||||
encode_bitstring(b"\xff\x00", 8)
|
||||
|
||||
def test_invalid_unused_with_empty_string(self):
|
||||
with self.assertRaises(ValueError):
|
||||
encode_bitstring(b"", 1)
|
||||
|
||||
def test_non_zero_padding_bits(self):
|
||||
with self.assertRaises(ValueError):
|
||||
encode_bitstring(b"\xff", 2)
|
||||
|
||||
|
||||
class TestRemoveBitstring(unittest.TestCase):
|
||||
def test_old_call_convention(self):
|
||||
"""This is the old way to call the function."""
|
||||
warnings.simplefilter("always")
|
||||
with pytest.warns(DeprecationWarning) as warns:
|
||||
bits, rest = remove_bitstring(b"\x03\x02\x00\xff")
|
||||
|
||||
self.assertEqual(len(warns), 1)
|
||||
self.assertIn(
|
||||
"expect_unused= needs to be specified", warns[0].message.args[0]
|
||||
)
|
||||
|
||||
self.assertEqual(bits, b"\x00\xff")
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_new_call_convention(self):
|
||||
warnings.simplefilter("always")
|
||||
with pytest.warns(None) as warns:
|
||||
bits, rest = remove_bitstring(b"\x03\x02\x00\xff", 0)
|
||||
|
||||
self.assertEqual(len(warns), 0)
|
||||
|
||||
self.assertEqual(bits, b"\xff")
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_implicit_unexpected_unused(self):
|
||||
warnings.simplefilter("always")
|
||||
with pytest.warns(None) as warns:
|
||||
bits, rest = remove_bitstring(b"\x03\x02\x00\xff", None)
|
||||
|
||||
self.assertEqual(len(warns), 0)
|
||||
|
||||
self.assertEqual(bits, (b"\xff", 0))
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_with_padding(self):
|
||||
ret, rest = remove_bitstring(b"\x03\x02\x04\xf0", None)
|
||||
|
||||
self.assertEqual(ret, (b"\xf0", 4))
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_not_a_bitstring(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x02\x02\x00\xff", None)
|
||||
|
||||
def test_empty_encoding(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x03\x00", None)
|
||||
|
||||
def test_empty_string(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"", None)
|
||||
|
||||
def test_no_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x03", None)
|
||||
|
||||
def test_unexpected_number_of_unused_bits(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x03\x02\x00\xff", 1)
|
||||
|
||||
def test_invalid_encoding_of_unused_bits(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x03\x03\x08\xff\x00", None)
|
||||
|
||||
def test_invalid_encoding_of_empty_string(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x03\x01\x01", None)
|
||||
|
||||
def test_invalid_padding_bits(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_bitstring(b"\x03\x02\x01\xff", None)
|
||||
|
||||
|
||||
class TestStrIdxAsInt(unittest.TestCase):
|
||||
def test_str(self):
|
||||
self.assertEqual(115, str_idx_as_int("str", 0))
|
||||
|
||||
def test_bytes(self):
|
||||
self.assertEqual(115, str_idx_as_int(b"str", 0))
|
||||
|
||||
def test_bytearray(self):
|
||||
self.assertEqual(115, str_idx_as_int(bytearray(b"str"), 0))
|
||||
|
||||
|
||||
class TestEncodeOid(unittest.TestCase):
|
||||
def test_pub_key_oid(self):
|
||||
oid_ecPublicKey = encode_oid(1, 2, 840, 10045, 2, 1)
|
||||
self.assertEqual(hexlify(oid_ecPublicKey), b("06072a8648ce3d0201"))
|
||||
|
||||
def test_nist224p_oid(self):
|
||||
self.assertEqual(hexlify(NIST224p.encoded_oid), b("06052b81040021"))
|
||||
|
||||
def test_nist256p_oid(self):
|
||||
self.assertEqual(
|
||||
hexlify(NIST256p.encoded_oid), b"06082a8648ce3d030107"
|
||||
)
|
||||
|
||||
def test_large_second_subid(self):
|
||||
# from X.690, section 8.19.5
|
||||
oid = encode_oid(2, 999, 3)
|
||||
self.assertEqual(oid, b"\x06\x03\x88\x37\x03")
|
||||
|
||||
def test_with_two_subids(self):
|
||||
oid = encode_oid(2, 999)
|
||||
self.assertEqual(oid, b"\x06\x02\x88\x37")
|
||||
|
||||
def test_zero_zero(self):
|
||||
oid = encode_oid(0, 0)
|
||||
self.assertEqual(oid, b"\x06\x01\x00")
|
||||
|
||||
def test_with_wrong_types(self):
|
||||
with self.assertRaises((TypeError, AssertionError)):
|
||||
encode_oid(0, None)
|
||||
|
||||
def test_with_small_first_large_second(self):
|
||||
with self.assertRaises(AssertionError):
|
||||
encode_oid(1, 40)
|
||||
|
||||
def test_small_first_max_second(self):
|
||||
oid = encode_oid(1, 39)
|
||||
self.assertEqual(oid, b"\x06\x01\x4f")
|
||||
|
||||
def test_with_invalid_first(self):
|
||||
with self.assertRaises(AssertionError):
|
||||
encode_oid(3, 39)
|
||||
|
||||
|
||||
class TestRemoveObject(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.oid_ecPublicKey = encode_oid(1, 2, 840, 10045, 2, 1)
|
||||
|
||||
def test_pub_key_oid(self):
|
||||
oid, rest = remove_object(self.oid_ecPublicKey)
|
||||
self.assertEqual(rest, b"")
|
||||
self.assertEqual(oid, (1, 2, 840, 10045, 2, 1))
|
||||
|
||||
def test_with_extra_bytes(self):
|
||||
oid, rest = remove_object(self.oid_ecPublicKey + b"more")
|
||||
self.assertEqual(rest, b"more")
|
||||
self.assertEqual(oid, (1, 2, 840, 10045, 2, 1))
|
||||
|
||||
def test_with_large_second_subid(self):
|
||||
# from X.690, section 8.19.5
|
||||
oid, rest = remove_object(b"\x06\x03\x88\x37\x03")
|
||||
self.assertEqual(rest, b"")
|
||||
self.assertEqual(oid, (2, 999, 3))
|
||||
|
||||
def test_with_padded_first_subid(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06\x02\x80\x00")
|
||||
|
||||
def test_with_padded_second_subid(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06\x04\x88\x37\x80\x01")
|
||||
|
||||
def test_with_missing_last_byte_of_multi_byte(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06\x03\x88\x37\x83")
|
||||
|
||||
def test_with_two_subids(self):
|
||||
oid, rest = remove_object(b"\x06\x02\x88\x37")
|
||||
self.assertEqual(rest, b"")
|
||||
self.assertEqual(oid, (2, 999))
|
||||
|
||||
def test_zero_zero(self):
|
||||
oid, rest = remove_object(b"\x06\x01\x00")
|
||||
self.assertEqual(rest, b"")
|
||||
self.assertEqual(oid, (0, 0))
|
||||
|
||||
def test_empty_string(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"")
|
||||
|
||||
def test_missing_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06")
|
||||
|
||||
def test_empty_oid(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06\x00")
|
||||
|
||||
def test_empty_oid_overflow(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06\x01")
|
||||
|
||||
def test_with_wrong_type(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x04\x02\x88\x37")
|
||||
|
||||
def test_with_too_long_length(self):
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
remove_object(b"\x06\x03\x88\x37")
|
||||
|
||||
|
||||
class TestRemoveConstructed(unittest.TestCase):
|
||||
def test_simple(self):
|
||||
data = b"\xa1\x02\xff\xaa"
|
||||
|
||||
tag, body, rest = remove_constructed(data)
|
||||
|
||||
self.assertEqual(tag, 0x01)
|
||||
self.assertEqual(body, b"\xff\xaa")
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_with_malformed_tag(self):
|
||||
data = b"\x01\x02\xff\xaa"
|
||||
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_constructed(data)
|
||||
|
||||
self.assertIn("constructed tag", str(e.exception))
|
||||
|
||||
|
||||
class TestRemoveOctetString(unittest.TestCase):
|
||||
def test_simple(self):
|
||||
data = b"\x04\x03\xaa\xbb\xcc"
|
||||
body, rest = remove_octet_string(data)
|
||||
self.assertEqual(body, b"\xaa\xbb\xcc")
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_with_malformed_tag(self):
|
||||
data = b"\x03\x03\xaa\xbb\xcc"
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_octet_string(data)
|
||||
|
||||
self.assertIn("octetstring", str(e.exception))
|
||||
|
||||
|
||||
class TestRemoveSequence(unittest.TestCase):
|
||||
def test_simple(self):
|
||||
data = b"\x30\x02\xff\xaa"
|
||||
body, rest = remove_sequence(data)
|
||||
self.assertEqual(body, b"\xff\xaa")
|
||||
self.assertEqual(rest, b"")
|
||||
|
||||
def test_with_empty_string(self):
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_sequence(b"")
|
||||
|
||||
self.assertIn("Empty string", str(e.exception))
|
||||
|
||||
def test_with_wrong_tag(self):
|
||||
data = b"\x20\x02\xff\xaa"
|
||||
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_sequence(data)
|
||||
|
||||
self.assertIn("wanted type 'sequence'", str(e.exception))
|
||||
|
||||
def test_with_wrong_length(self):
|
||||
data = b"\x30\x03\xff\xaa"
|
||||
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
remove_sequence(data)
|
||||
|
||||
self.assertIn("Length longer", str(e.exception))
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_oid(draw, max_value=2**512, max_size=50):
|
||||
"""
|
||||
Hypothesis strategy that returns valid OBJECT IDENTIFIERs as tuples
|
||||
|
||||
:param max_value: maximum value of any single sub-identifier
|
||||
:param max_size: maximum length of the generated OID
|
||||
"""
|
||||
first = draw(st.integers(min_value=0, max_value=2))
|
||||
if first < 2:
|
||||
second = draw(st.integers(min_value=0, max_value=39))
|
||||
else:
|
||||
second = draw(st.integers(min_value=0, max_value=max_value))
|
||||
rest = draw(
|
||||
st.lists(
|
||||
st.integers(min_value=0, max_value=max_value), max_size=max_size
|
||||
)
|
||||
)
|
||||
return (first, second) + tuple(rest)
|
||||
|
||||
|
||||
@given(st_oid())
|
||||
def test_oids(ids):
|
||||
encoded_oid = encode_oid(*ids)
|
||||
decoded_oid, rest = remove_object(encoded_oid)
|
||||
assert rest == b""
|
||||
assert decoded_oid == ids
|
||||
441
dist/ba_data/python-site-packages/ecdsa/test_ecdh.py
vendored
441
dist/ba_data/python-site-packages/ecdsa/test_ecdh.py
vendored
|
|
@ -1,441 +0,0 @@
|
|||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import pytest
|
||||
from binascii import unhexlify
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
|
||||
from .curves import (
|
||||
NIST192p,
|
||||
NIST224p,
|
||||
NIST256p,
|
||||
NIST384p,
|
||||
NIST521p,
|
||||
BRAINPOOLP160r1,
|
||||
)
|
||||
from .curves import curves
|
||||
from .ecdh import (
|
||||
ECDH,
|
||||
InvalidCurveError,
|
||||
InvalidSharedSecretError,
|
||||
NoKeyError,
|
||||
NoCurveError,
|
||||
)
|
||||
from .keys import SigningKey, VerifyingKey
|
||||
from .ellipticcurve import CurveEdTw
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"vcurve",
|
||||
curves,
|
||||
ids=[curve.name for curve in curves],
|
||||
)
|
||||
def test_ecdh_each(vcurve):
|
||||
if isinstance(vcurve.curve, CurveEdTw):
|
||||
pytest.skip("ECDH is not supported for Edwards curves")
|
||||
ecdh1 = ECDH(curve=vcurve)
|
||||
ecdh2 = ECDH(curve=vcurve)
|
||||
|
||||
ecdh2.generate_private_key()
|
||||
ecdh1.load_received_public_key(ecdh2.get_public_key())
|
||||
ecdh2.load_received_public_key(ecdh1.generate_private_key())
|
||||
|
||||
secret1 = ecdh1.generate_sharedsecret_bytes()
|
||||
secret2 = ecdh2.generate_sharedsecret_bytes()
|
||||
assert secret1 == secret2
|
||||
|
||||
|
||||
def test_ecdh_both_keys_present():
|
||||
key1 = SigningKey.generate(BRAINPOOLP160r1)
|
||||
key2 = SigningKey.generate(BRAINPOOLP160r1)
|
||||
|
||||
ecdh1 = ECDH(BRAINPOOLP160r1, key1, key2.verifying_key)
|
||||
ecdh2 = ECDH(private_key=key2, public_key=key1.verifying_key)
|
||||
|
||||
secret1 = ecdh1.generate_sharedsecret_bytes()
|
||||
secret2 = ecdh2.generate_sharedsecret_bytes()
|
||||
|
||||
assert secret1 == secret2
|
||||
|
||||
|
||||
def test_ecdh_no_public_key():
|
||||
ecdh1 = ECDH(curve=NIST192p)
|
||||
|
||||
with pytest.raises(NoKeyError):
|
||||
ecdh1.generate_sharedsecret_bytes()
|
||||
|
||||
ecdh1.generate_private_key()
|
||||
|
||||
with pytest.raises(NoKeyError):
|
||||
ecdh1.generate_sharedsecret_bytes()
|
||||
|
||||
|
||||
class TestECDH(unittest.TestCase):
|
||||
def test_load_key_from_wrong_curve(self):
|
||||
ecdh1 = ECDH()
|
||||
ecdh1.set_curve(NIST192p)
|
||||
|
||||
key1 = SigningKey.generate(BRAINPOOLP160r1)
|
||||
|
||||
with self.assertRaises(InvalidCurveError) as e:
|
||||
ecdh1.load_private_key(key1)
|
||||
|
||||
self.assertIn("Curve mismatch", str(e.exception))
|
||||
|
||||
def test_generate_without_curve(self):
|
||||
ecdh1 = ECDH()
|
||||
|
||||
with self.assertRaises(NoCurveError) as e:
|
||||
ecdh1.generate_private_key()
|
||||
|
||||
self.assertIn("Curve must be set", str(e.exception))
|
||||
|
||||
def test_load_bytes_without_curve_set(self):
|
||||
ecdh1 = ECDH()
|
||||
|
||||
with self.assertRaises(NoCurveError) as e:
|
||||
ecdh1.load_private_key_bytes(b"\x01" * 32)
|
||||
|
||||
self.assertIn("Curve must be set", str(e.exception))
|
||||
|
||||
def test_set_curve_from_received_public_key(self):
|
||||
ecdh1 = ECDH()
|
||||
|
||||
key1 = SigningKey.generate(BRAINPOOLP160r1)
|
||||
|
||||
ecdh1.load_received_public_key(key1.verifying_key)
|
||||
|
||||
self.assertEqual(ecdh1.curve, BRAINPOOLP160r1)
|
||||
|
||||
|
||||
def test_ecdh_wrong_public_key_curve():
|
||||
ecdh1 = ECDH(curve=NIST192p)
|
||||
ecdh1.generate_private_key()
|
||||
ecdh2 = ECDH(curve=NIST256p)
|
||||
ecdh2.generate_private_key()
|
||||
|
||||
with pytest.raises(InvalidCurveError):
|
||||
ecdh1.load_received_public_key(ecdh2.get_public_key())
|
||||
|
||||
with pytest.raises(InvalidCurveError):
|
||||
ecdh2.load_received_public_key(ecdh1.get_public_key())
|
||||
|
||||
ecdh1.public_key = ecdh2.get_public_key()
|
||||
ecdh2.public_key = ecdh1.get_public_key()
|
||||
|
||||
with pytest.raises(InvalidCurveError):
|
||||
ecdh1.generate_sharedsecret_bytes()
|
||||
|
||||
with pytest.raises(InvalidCurveError):
|
||||
ecdh2.generate_sharedsecret_bytes()
|
||||
|
||||
|
||||
def test_ecdh_invalid_shared_secret_curve():
|
||||
ecdh1 = ECDH(curve=NIST256p)
|
||||
ecdh1.generate_private_key()
|
||||
|
||||
ecdh1.load_received_public_key(
|
||||
SigningKey.generate(NIST256p).get_verifying_key()
|
||||
)
|
||||
|
||||
ecdh1.private_key.privkey.secret_multiplier = ecdh1.private_key.curve.order
|
||||
|
||||
with pytest.raises(InvalidSharedSecretError):
|
||||
ecdh1.generate_sharedsecret_bytes()
|
||||
|
||||
|
||||
# https://github.com/scogliani/ecc-test-vectors/blob/master/ecdh_kat/secp192r1.txt
|
||||
# https://github.com/scogliani/ecc-test-vectors/blob/master/ecdh_kat/secp256r1.txt
|
||||
# https://github.com/coruus/nist-testvectors/blob/master/csrc.nist.gov/groups/STM/cavp/documents/components/ecccdhtestvectors/KAS_ECC_CDH_PrimitiveTest.txt
|
||||
@pytest.mark.parametrize(
|
||||
"curve,privatekey,pubkey,secret",
|
||||
[
|
||||
pytest.param(
|
||||
NIST192p,
|
||||
"f17d3fea367b74d340851ca4270dcb24c271f445bed9d527",
|
||||
"42ea6dd9969dd2a61fea1aac7f8e98edcc896c6e55857cc0"
|
||||
"dfbe5d7c61fac88b11811bde328e8a0d12bf01a9d204b523",
|
||||
"803d8ab2e5b6e6fca715737c3a82f7ce3c783124f6d51cd0",
|
||||
id="NIST192p-1",
|
||||
),
|
||||
pytest.param(
|
||||
NIST192p,
|
||||
"56e853349d96fe4c442448dacb7cf92bb7a95dcf574a9bd5",
|
||||
"deb5712fa027ac8d2f22c455ccb73a91e17b6512b5e030e7"
|
||||
"7e2690a02cc9b28708431a29fb54b87b1f0c14e011ac2125",
|
||||
"c208847568b98835d7312cef1f97f7aa298283152313c29d",
|
||||
id="NIST192p-2",
|
||||
),
|
||||
pytest.param(
|
||||
NIST192p,
|
||||
"c6ef61fe12e80bf56f2d3f7d0bb757394519906d55500949",
|
||||
"4edaa8efc5a0f40f843663ec5815e7762dddc008e663c20f"
|
||||
"0a9f8dc67a3e60ef6d64b522185d03df1fc0adfd42478279",
|
||||
"87229107047a3b611920d6e3b2c0c89bea4f49412260b8dd",
|
||||
id="NIST192p-3",
|
||||
),
|
||||
pytest.param(
|
||||
NIST192p,
|
||||
"e6747b9c23ba7044f38ff7e62c35e4038920f5a0163d3cda",
|
||||
"8887c276edeed3e9e866b46d58d895c73fbd80b63e382e88"
|
||||
"04c5097ba6645e16206cfb70f7052655947dd44a17f1f9d5",
|
||||
"eec0bed8fc55e1feddc82158fd6dc0d48a4d796aaf47d46c",
|
||||
id="NIST192p-4",
|
||||
),
|
||||
pytest.param(
|
||||
NIST192p,
|
||||
"beabedd0154a1afcfc85d52181c10f5eb47adc51f655047d",
|
||||
"0d045f30254adc1fcefa8a5b1f31bf4e739dd327cd18d594"
|
||||
"542c314e41427c08278a08ce8d7305f3b5b849c72d8aff73",
|
||||
"716e743b1b37a2cd8479f0a3d5a74c10ba2599be18d7e2f4",
|
||||
id="NIST192p-5",
|
||||
),
|
||||
pytest.param(
|
||||
NIST192p,
|
||||
"cf70354226667321d6e2baf40999e2fd74c7a0f793fa8699",
|
||||
"fb35ca20d2e96665c51b98e8f6eb3d79113508d8bccd4516"
|
||||
"368eec0d5bfb847721df6aaff0e5d48c444f74bf9cd8a5a7",
|
||||
"f67053b934459985a315cb017bf0302891798d45d0e19508",
|
||||
id="NIST192p-6",
|
||||
),
|
||||
pytest.param(
|
||||
NIST224p,
|
||||
"8346a60fc6f293ca5a0d2af68ba71d1dd389e5e40837942df3e43cbd",
|
||||
"af33cd0629bc7e996320a3f40368f74de8704fa37b8fab69abaae280"
|
||||
"882092ccbba7930f419a8a4f9bb16978bbc3838729992559a6f2e2d7",
|
||||
"7d96f9a3bd3c05cf5cc37feb8b9d5209d5c2597464dec3e9983743e8",
|
||||
id="NIST224p",
|
||||
),
|
||||
pytest.param(
|
||||
NIST256p,
|
||||
"7d7dc5f71eb29ddaf80d6214632eeae03d9058af1fb6d22ed80badb62bc1a534",
|
||||
"700c48f77f56584c5cc632ca65640db91b6bacce3a4df6b42ce7cc838833d287"
|
||||
"db71e509e3fd9b060ddb20ba5c51dcc5948d46fbf640dfe0441782cab85fa4ac",
|
||||
"46fc62106420ff012e54a434fbdd2d25ccc5852060561e68040dd7778997bd7b",
|
||||
id="NIST256p-1",
|
||||
),
|
||||
pytest.param(
|
||||
NIST256p,
|
||||
"38f65d6dce47676044d58ce5139582d568f64bb16098d179dbab07741dd5caf5",
|
||||
"809f04289c64348c01515eb03d5ce7ac1a8cb9498f5caa50197e58d43a86a7ae"
|
||||
"b29d84e811197f25eba8f5194092cb6ff440e26d4421011372461f579271cda3",
|
||||
"057d636096cb80b67a8c038c890e887d1adfa4195e9b3ce241c8a778c59cda67",
|
||||
id="NIST256p-2",
|
||||
),
|
||||
pytest.param(
|
||||
NIST256p,
|
||||
"1accfaf1b97712b85a6f54b148985a1bdc4c9bec0bd258cad4b3d603f49f32c8",
|
||||
"a2339c12d4a03c33546de533268b4ad667debf458b464d77443636440ee7fec3"
|
||||
"ef48a3ab26e20220bcda2c1851076839dae88eae962869a497bf73cb66faf536",
|
||||
"2d457b78b4614132477618a5b077965ec90730a8c81a1c75d6d4ec68005d67ec",
|
||||
id="NIST256p-3",
|
||||
),
|
||||
pytest.param(
|
||||
NIST256p,
|
||||
"207c43a79bfee03db6f4b944f53d2fb76cc49ef1c9c4d34d51b6c65c4db6932d",
|
||||
"df3989b9fa55495719b3cf46dccd28b5153f7808191dd518eff0c3cff2b705ed"
|
||||
"422294ff46003429d739a33206c8752552c8ba54a270defc06e221e0feaf6ac4",
|
||||
"96441259534b80f6aee3d287a6bb17b5094dd4277d9e294f8fe73e48bf2a0024",
|
||||
id="NIST256p-4",
|
||||
),
|
||||
pytest.param(
|
||||
NIST256p,
|
||||
"59137e38152350b195c9718d39673d519838055ad908dd4757152fd8255c09bf",
|
||||
"41192d2813e79561e6a1d6f53c8bc1a433a199c835e141b05a74a97b0faeb922"
|
||||
"1af98cc45e98a7e041b01cf35f462b7562281351c8ebf3ffa02e33a0722a1328",
|
||||
"19d44c8d63e8e8dd12c22a87b8cd4ece27acdde04dbf47f7f27537a6999a8e62",
|
||||
id="NIST256p-5",
|
||||
),
|
||||
pytest.param(
|
||||
NIST256p,
|
||||
"f5f8e0174610a661277979b58ce5c90fee6c9b3bb346a90a7196255e40b132ef",
|
||||
"33e82092a0f1fb38f5649d5867fba28b503172b7035574bf8e5b7100a3052792"
|
||||
"f2cf6b601e0a05945e335550bf648d782f46186c772c0f20d3cd0d6b8ca14b2f",
|
||||
"664e45d5bba4ac931cd65d52017e4be9b19a515f669bea4703542a2c525cd3d3",
|
||||
id="NIST256p-6",
|
||||
),
|
||||
pytest.param(
|
||||
NIST384p,
|
||||
"3cc3122a68f0d95027ad38c067916ba0eb8c38894d22e1b1"
|
||||
"5618b6818a661774ad463b205da88cf699ab4d43c9cf98a1",
|
||||
"a7c76b970c3b5fe8b05d2838ae04ab47697b9eaf52e76459"
|
||||
"2efda27fe7513272734466b400091adbf2d68c58e0c50066"
|
||||
"ac68f19f2e1cb879aed43a9969b91a0839c4c38a49749b66"
|
||||
"1efedf243451915ed0905a32b060992b468c64766fc8437a",
|
||||
"5f9d29dc5e31a163060356213669c8ce132e22f57c9a04f4"
|
||||
"0ba7fcead493b457e5621e766c40a2e3d4d6a04b25e533f1",
|
||||
id="NIST384p",
|
||||
),
|
||||
pytest.param(
|
||||
NIST521p,
|
||||
"017eecc07ab4b329068fba65e56a1f8890aa935e57134ae0ffcce802735151f4ea"
|
||||
"c6564f6ee9974c5e6887a1fefee5743ae2241bfeb95d5ce31ddcb6f9edb4d6fc47",
|
||||
"00685a48e86c79f0f0875f7bc18d25eb5fc8c0b07e5da4f4370f3a949034085433"
|
||||
"4b1e1b87fa395464c60626124a4e70d0f785601d37c09870ebf176666877a2046d"
|
||||
"01ba52c56fc8776d9e8f5db4f0cc27636d0b741bbe05400697942e80b739884a83"
|
||||
"bde99e0f6716939e632bc8986fa18dccd443a348b6c3e522497955a4f3c302f676",
|
||||
"005fc70477c3e63bc3954bd0df3ea0d1f41ee21746ed95fc5e1fdf90930d5e1366"
|
||||
"72d72cc770742d1711c3c3a4c334a0ad9759436a4d3c5bf6e74b9578fac148c831",
|
||||
id="NIST521p",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_ecdh_NIST(curve, privatekey, pubkey, secret):
|
||||
ecdh = ECDH(curve=curve)
|
||||
ecdh.load_private_key_bytes(unhexlify(privatekey))
|
||||
ecdh.load_received_public_key_bytes(unhexlify(pubkey))
|
||||
|
||||
sharedsecret = ecdh.generate_sharedsecret_bytes()
|
||||
|
||||
assert sharedsecret == unhexlify(secret)
|
||||
|
||||
|
||||
pem_local_private_key = (
|
||||
"-----BEGIN EC PRIVATE KEY-----\n"
|
||||
"MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n"
|
||||
"BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n"
|
||||
"bA==\n"
|
||||
"-----END EC PRIVATE KEY-----\n"
|
||||
)
|
||||
der_local_private_key = (
|
||||
"305f02010104185ec8420bd6ef9252a942e989043ca29f561fa525770eb1c5a00a06082a864"
|
||||
"8ce3d030101a13403320004b88177d084ef17f5e45639408028360f9f59b4a4d7264e62da06"
|
||||
"51dce47a35a4c5b45cf51593423a8b557b9c2099f36c"
|
||||
)
|
||||
pem_remote_public_key = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEuIF30ITvF/XkVjlAgCg2D59ZtKTX\n"
|
||||
"Jk5i2gZR3OR6NaTFtFz1FZNCOotVe5wgmfNs\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
der_remote_public_key = (
|
||||
"3049301306072a8648ce3d020106082a8648ce3d03010103320004b88177d084ef17f5e4563"
|
||||
"9408028360f9f59b4a4d7264e62da0651dce47a35a4c5b45cf51593423a8b557b9c2099f36c"
|
||||
)
|
||||
gshared_secret = "8f457e34982478d1c34b9cd2d0c15911b72dd60d869e2cea"
|
||||
|
||||
|
||||
def test_ecdh_pem():
|
||||
ecdh = ECDH()
|
||||
ecdh.load_private_key_pem(pem_local_private_key)
|
||||
ecdh.load_received_public_key_pem(pem_remote_public_key)
|
||||
|
||||
sharedsecret = ecdh.generate_sharedsecret_bytes()
|
||||
|
||||
assert sharedsecret == unhexlify(gshared_secret)
|
||||
|
||||
|
||||
def test_ecdh_der():
|
||||
ecdh = ECDH()
|
||||
ecdh.load_private_key_der(unhexlify(der_local_private_key))
|
||||
ecdh.load_received_public_key_der(unhexlify(der_remote_public_key))
|
||||
|
||||
sharedsecret = ecdh.generate_sharedsecret_bytes()
|
||||
|
||||
assert sharedsecret == unhexlify(gshared_secret)
|
||||
|
||||
|
||||
# Exception classes used by run_openssl.
|
||||
class RunOpenSslError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def run_openssl(cmd):
|
||||
OPENSSL = "openssl"
|
||||
p = subprocess.Popen(
|
||||
[OPENSSL] + cmd.split(),
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.STDOUT,
|
||||
)
|
||||
stdout, ignored = p.communicate()
|
||||
if p.returncode != 0:
|
||||
raise RunOpenSslError(
|
||||
"cmd '%s %s' failed: rc=%s, stdout/err was %s"
|
||||
% (OPENSSL, cmd, p.returncode, stdout)
|
||||
)
|
||||
return stdout.decode()
|
||||
|
||||
|
||||
OPENSSL_SUPPORTED_CURVES = set(
|
||||
c.split(":")[0].strip()
|
||||
for c in run_openssl("ecparam -list_curves").split("\n")
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"vcurve",
|
||||
curves,
|
||||
ids=[curve.name for curve in curves],
|
||||
)
|
||||
def test_ecdh_with_openssl(vcurve):
|
||||
if isinstance(vcurve.curve, CurveEdTw):
|
||||
pytest.skip("Edwards curves are not supported for ECDH")
|
||||
|
||||
assert vcurve.openssl_name
|
||||
|
||||
if vcurve.openssl_name not in OPENSSL_SUPPORTED_CURVES:
|
||||
pytest.skip("system openssl does not support " + vcurve.openssl_name)
|
||||
|
||||
try:
|
||||
hlp = run_openssl("pkeyutl -help")
|
||||
if hlp.find("-derive") == 0: # pragma: no cover
|
||||
pytest.skip("system openssl does not support `pkeyutl -derive`")
|
||||
except RunOpenSslError: # pragma: no cover
|
||||
pytest.skip("system openssl could not be executed")
|
||||
|
||||
if os.path.isdir("t"): # pragma: no branch
|
||||
shutil.rmtree("t")
|
||||
os.mkdir("t")
|
||||
run_openssl(
|
||||
"ecparam -name %s -genkey -out t/privkey1.pem" % vcurve.openssl_name
|
||||
)
|
||||
run_openssl(
|
||||
"ecparam -name %s -genkey -out t/privkey2.pem" % vcurve.openssl_name
|
||||
)
|
||||
run_openssl("ec -in t/privkey1.pem -pubout -out t/pubkey1.pem")
|
||||
|
||||
ecdh1 = ECDH(curve=vcurve)
|
||||
ecdh2 = ECDH(curve=vcurve)
|
||||
with open("t/privkey1.pem") as e:
|
||||
key = e.read()
|
||||
ecdh1.load_private_key_pem(key)
|
||||
with open("t/privkey2.pem") as e:
|
||||
key = e.read()
|
||||
ecdh2.load_private_key_pem(key)
|
||||
|
||||
with open("t/pubkey1.pem") as e:
|
||||
key = e.read()
|
||||
vk1 = VerifyingKey.from_pem(key)
|
||||
assert vk1.to_string() == ecdh1.get_public_key().to_string()
|
||||
vk2 = ecdh2.get_public_key()
|
||||
with open("t/pubkey2.pem", "wb") as e:
|
||||
e.write(vk2.to_pem())
|
||||
|
||||
ecdh1.load_received_public_key(vk2)
|
||||
ecdh2.load_received_public_key(vk1)
|
||||
secret1 = ecdh1.generate_sharedsecret_bytes()
|
||||
secret2 = ecdh2.generate_sharedsecret_bytes()
|
||||
|
||||
assert secret1 == secret2
|
||||
|
||||
run_openssl(
|
||||
"pkeyutl -derive -inkey t/privkey1.pem -peerkey t/pubkey2.pem -out t/secret1"
|
||||
)
|
||||
run_openssl(
|
||||
"pkeyutl -derive -inkey t/privkey2.pem -peerkey t/pubkey1.pem -out t/secret2"
|
||||
)
|
||||
|
||||
with open("t/secret1", "rb") as e:
|
||||
ssl_secret1 = e.read()
|
||||
with open("t/secret1", "rb") as e:
|
||||
ssl_secret2 = e.read()
|
||||
|
||||
assert len(ssl_secret1) == vk1.curve.verifying_key_length // 2
|
||||
assert len(secret1) == vk1.curve.verifying_key_length // 2
|
||||
|
||||
assert ssl_secret1 == ssl_secret2
|
||||
assert secret1 == ssl_secret1
|
||||
|
|
@ -1,661 +0,0 @@
|
|||
from __future__ import print_function
|
||||
import sys
|
||||
import hypothesis.strategies as st
|
||||
from hypothesis import given, settings, note, example
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
import pytest
|
||||
from .ecdsa import (
|
||||
Private_key,
|
||||
Public_key,
|
||||
Signature,
|
||||
generator_192,
|
||||
digest_integer,
|
||||
ellipticcurve,
|
||||
point_is_valid,
|
||||
generator_224,
|
||||
generator_256,
|
||||
generator_384,
|
||||
generator_521,
|
||||
generator_secp256k1,
|
||||
curve_192,
|
||||
InvalidPointError,
|
||||
curve_112r2,
|
||||
generator_112r2,
|
||||
int_to_string,
|
||||
)
|
||||
|
||||
|
||||
HYP_SETTINGS = {}
|
||||
# old hypothesis doesn't have the "deadline" setting
|
||||
if sys.version_info > (2, 7): # pragma: no branch
|
||||
# SEC521p is slow, allow long execution for it
|
||||
HYP_SETTINGS["deadline"] = 5000
|
||||
|
||||
|
||||
class TestP192FromX9_62(unittest.TestCase):
|
||||
"""Check test vectors from X9.62"""
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.d = 651056770906015076056810763456358567190100156695615665659
|
||||
cls.Q = cls.d * generator_192
|
||||
cls.k = 6140507067065001063065065565667405560006161556565665656654
|
||||
cls.R = cls.k * generator_192
|
||||
|
||||
cls.msg = 968236873715988614170569073515315707566766479517
|
||||
cls.pubk = Public_key(generator_192, generator_192 * cls.d)
|
||||
cls.privk = Private_key(cls.pubk, cls.d)
|
||||
cls.sig = cls.privk.sign(cls.msg, cls.k)
|
||||
|
||||
def test_point_multiplication(self):
|
||||
assert self.Q.x() == 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5
|
||||
|
||||
def test_point_multiplication_2(self):
|
||||
assert self.R.x() == 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD
|
||||
assert self.R.y() == 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835
|
||||
|
||||
def test_mult_and_addition(self):
|
||||
u1 = 2563697409189434185194736134579731015366492496392189760599
|
||||
u2 = 6266643813348617967186477710235785849136406323338782220568
|
||||
temp = u1 * generator_192 + u2 * self.Q
|
||||
assert temp.x() == 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD
|
||||
assert temp.y() == 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835
|
||||
|
||||
def test_signature(self):
|
||||
r, s = self.sig.r, self.sig.s
|
||||
assert r == 3342403536405981729393488334694600415596881826869351677613
|
||||
assert s == 5735822328888155254683894997897571951568553642892029982342
|
||||
|
||||
def test_verification(self):
|
||||
assert self.pubk.verifies(self.msg, self.sig)
|
||||
|
||||
def test_rejection(self):
|
||||
assert not self.pubk.verifies(self.msg - 1, self.sig)
|
||||
|
||||
|
||||
class TestPublicKey(unittest.TestCase):
|
||||
def test_equality_public_keys(self):
|
||||
gen = generator_192
|
||||
x = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point = ellipticcurve.Point(gen.curve(), x, y)
|
||||
pub_key1 = Public_key(gen, point)
|
||||
pub_key2 = Public_key(gen, point)
|
||||
self.assertEqual(pub_key1, pub_key2)
|
||||
|
||||
def test_inequality_public_key(self):
|
||||
gen = generator_192
|
||||
x1 = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y1 = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point1 = ellipticcurve.Point(gen.curve(), x1, y1)
|
||||
|
||||
x2 = 0x6A223D00BD22C52833409A163E057E5B5DA1DEF2A197DD15
|
||||
y2 = 0x7B482604199367F1F303F9EF627F922F97023E90EAE08ABF
|
||||
point2 = ellipticcurve.Point(gen.curve(), x2, y2)
|
||||
|
||||
pub_key1 = Public_key(gen, point1)
|
||||
pub_key2 = Public_key(gen, point2)
|
||||
self.assertNotEqual(pub_key1, pub_key2)
|
||||
|
||||
def test_inequality_different_curves(self):
|
||||
gen = generator_192
|
||||
x1 = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y1 = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point1 = ellipticcurve.Point(gen.curve(), x1, y1)
|
||||
|
||||
x2 = 0x722BA0FB6B8FC8898A4C6AB49E66
|
||||
y2 = 0x2B7344BB57A7ABC8CA0F1A398C7D
|
||||
point2 = ellipticcurve.Point(generator_112r2.curve(), x2, y2)
|
||||
|
||||
pub_key1 = Public_key(gen, point1)
|
||||
pub_key2 = Public_key(generator_112r2, point2)
|
||||
self.assertNotEqual(pub_key1, pub_key2)
|
||||
|
||||
def test_inequality_public_key_not_implemented(self):
|
||||
gen = generator_192
|
||||
x = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point = ellipticcurve.Point(gen.curve(), x, y)
|
||||
pub_key = Public_key(gen, point)
|
||||
self.assertNotEqual(pub_key, None)
|
||||
|
||||
def test_public_key_with_generator_without_order(self):
|
||||
gen = ellipticcurve.PointJacobi(
|
||||
generator_192.curve(), generator_192.x(), generator_192.y(), 1
|
||||
)
|
||||
|
||||
x = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point = ellipticcurve.Point(gen.curve(), x, y)
|
||||
|
||||
with self.assertRaises(InvalidPointError) as e:
|
||||
Public_key(gen, point)
|
||||
|
||||
self.assertIn("Generator point must have order", str(e.exception))
|
||||
|
||||
def test_public_point_on_curve_not_scalar_multiple_of_base_point(self):
|
||||
x = 2
|
||||
y = 0xBE6AA4938EF7CFE6FE29595B6B00
|
||||
# we need a curve with cofactor != 1
|
||||
point = ellipticcurve.PointJacobi(curve_112r2, x, y, 1)
|
||||
|
||||
self.assertTrue(curve_112r2.contains_point(x, y))
|
||||
|
||||
with self.assertRaises(InvalidPointError) as e:
|
||||
Public_key(generator_112r2, point)
|
||||
|
||||
self.assertIn("Generator point order", str(e.exception))
|
||||
|
||||
def test_point_is_valid_with_not_scalar_multiple_of_base_point(self):
|
||||
x = 2
|
||||
y = 0xBE6AA4938EF7CFE6FE29595B6B00
|
||||
|
||||
self.assertFalse(point_is_valid(generator_112r2, x, y))
|
||||
|
||||
# the tests to verify the extensiveness of tests in ecdsa.ecdsa
|
||||
# if PointJacobi gets modified to calculate the x and y mod p the tests
|
||||
# below will need to use a fake/mock object
|
||||
def test_invalid_point_x_negative(self):
|
||||
pt = ellipticcurve.PointJacobi(curve_192, -1, 0, 1)
|
||||
|
||||
with self.assertRaises(InvalidPointError) as e:
|
||||
Public_key(generator_192, pt)
|
||||
|
||||
self.assertIn("The public point has x or y", str(e.exception))
|
||||
|
||||
def test_invalid_point_x_equal_p(self):
|
||||
pt = ellipticcurve.PointJacobi(curve_192, curve_192.p(), 0, 1)
|
||||
|
||||
with self.assertRaises(InvalidPointError) as e:
|
||||
Public_key(generator_192, pt)
|
||||
|
||||
self.assertIn("The public point has x or y", str(e.exception))
|
||||
|
||||
def test_invalid_point_y_negative(self):
|
||||
pt = ellipticcurve.PointJacobi(curve_192, 0, -1, 1)
|
||||
|
||||
with self.assertRaises(InvalidPointError) as e:
|
||||
Public_key(generator_192, pt)
|
||||
|
||||
self.assertIn("The public point has x or y", str(e.exception))
|
||||
|
||||
def test_invalid_point_y_equal_p(self):
|
||||
pt = ellipticcurve.PointJacobi(curve_192, 0, curve_192.p(), 1)
|
||||
|
||||
with self.assertRaises(InvalidPointError) as e:
|
||||
Public_key(generator_192, pt)
|
||||
|
||||
self.assertIn("The public point has x or y", str(e.exception))
|
||||
|
||||
|
||||
class TestPublicKeyVerifies(unittest.TestCase):
|
||||
# test all the different ways that a signature can be publicly invalid
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
gen = generator_192
|
||||
x = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point = ellipticcurve.Point(gen.curve(), x, y)
|
||||
|
||||
cls.pub_key = Public_key(gen, point)
|
||||
|
||||
def test_sig_with_r_zero(self):
|
||||
sig = Signature(0, 1)
|
||||
|
||||
self.assertFalse(self.pub_key.verifies(1, sig))
|
||||
|
||||
def test_sig_with_r_order(self):
|
||||
sig = Signature(generator_192.order(), 1)
|
||||
|
||||
self.assertFalse(self.pub_key.verifies(1, sig))
|
||||
|
||||
def test_sig_with_s_zero(self):
|
||||
sig = Signature(1, 0)
|
||||
|
||||
self.assertFalse(self.pub_key.verifies(1, sig))
|
||||
|
||||
def test_sig_with_s_order(self):
|
||||
sig = Signature(1, generator_192.order())
|
||||
|
||||
self.assertFalse(self.pub_key.verifies(1, sig))
|
||||
|
||||
|
||||
class TestPrivateKey(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
gen = generator_192
|
||||
x = 0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6
|
||||
y = 0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F
|
||||
point = ellipticcurve.Point(gen.curve(), x, y)
|
||||
cls.pub_key = Public_key(gen, point)
|
||||
|
||||
def test_equality_private_keys(self):
|
||||
pr_key1 = Private_key(self.pub_key, 100)
|
||||
pr_key2 = Private_key(self.pub_key, 100)
|
||||
self.assertEqual(pr_key1, pr_key2)
|
||||
|
||||
def test_inequality_private_keys(self):
|
||||
pr_key1 = Private_key(self.pub_key, 100)
|
||||
pr_key2 = Private_key(self.pub_key, 200)
|
||||
self.assertNotEqual(pr_key1, pr_key2)
|
||||
|
||||
def test_inequality_private_keys_not_implemented(self):
|
||||
pr_key = Private_key(self.pub_key, 100)
|
||||
self.assertNotEqual(pr_key, None)
|
||||
|
||||
|
||||
# Testing point validity, as per ECDSAVS.pdf B.2.2:
|
||||
P192_POINTS = [
|
||||
(
|
||||
generator_192,
|
||||
0xCD6D0F029A023E9AACA429615B8F577ABEE685D8257CC83A,
|
||||
0x00019C410987680E9FB6C0B6ECC01D9A2647C8BAE27721BACDFC,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x00017F2FCE203639E9EAF9FB50B81FC32776B30E3B02AF16C73B,
|
||||
0x95DA95C5E72DD48E229D4748D4EEE658A9A54111B23B2ADB,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x4F77F8BC7FCCBADD5760F4938746D5F253EE2168C1CF2792,
|
||||
0x000147156FF824D131629739817EDB197717C41AAB5C2A70F0F6,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0xC58D61F88D905293BCD4CD0080BCB1B7F811F2FFA41979F6,
|
||||
0x8804DC7A7C4C7F8B5D437F5156F3312CA7D6DE8A0E11867F,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0xCDF56C1AA3D8AFC53C521ADF3FFB96734A6A630A4A5B5A70,
|
||||
0x97C1C44A5FB229007B5EC5D25F7413D170068FFD023CAA4E,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x89009C0DC361C81E99280C8E91DF578DF88CDF4B0CDEDCED,
|
||||
0x27BE44A529B7513E727251F128B34262A0FD4D8EC82377B9,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x6A223D00BD22C52833409A163E057E5B5DA1DEF2A197DD15,
|
||||
0x7B482604199367F1F303F9EF627F922F97023E90EAE08ABF,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x6DCCBDE75C0948C98DAB32EA0BC59FE125CF0FB1A3798EDA,
|
||||
0x0001171A3E0FA60CF3096F4E116B556198DE430E1FBD330C8835,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0xD266B39E1F491FC4ACBBBC7D098430931CFA66D55015AF12,
|
||||
0x193782EB909E391A3148B7764E6B234AA94E48D30A16DBB2,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x9D6DDBCD439BAA0C6B80A654091680E462A7D1D3F1FFEB43,
|
||||
0x6AD8EFC4D133CCF167C44EB4691C80ABFFB9F82B932B8CAA,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0x146479D944E6BDA87E5B35818AA666A4C998A71F4E95EDBC,
|
||||
0xA86D6FE62BC8FBD88139693F842635F687F132255858E7F6,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
0xE594D4A598046F3598243F50FD2C7BD7D380EDB055802253,
|
||||
0x509014C0C4D6B536E3CA750EC09066AF39B4C8616A53A923,
|
||||
False,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("generator,x,y,expected", P192_POINTS)
|
||||
def test_point_validity(generator, x, y, expected):
|
||||
"""
|
||||
`generator` defines the curve; is `(x, y)` a point on
|
||||
this curve? `expected` is True if the right answer is Yes.
|
||||
"""
|
||||
assert point_is_valid(generator, x, y) == expected
|
||||
|
||||
|
||||
# Trying signature-verification tests from ECDSAVS.pdf B.2.4:
|
||||
CURVE_192_KATS = [
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee"
|
||||
"425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30"
|
||||
"d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff79"
|
||||
"8cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d1"
|
||||
"58",
|
||||
16,
|
||||
),
|
||||
0xD9DBFB332AA8E5FF091E8CE535857C37C73F6250FFB2E7AC,
|
||||
0x282102E364FEDED3AD15DDF968F88D8321AA268DD483EBC4,
|
||||
0x64DCA58A20787C488D11D6DD96313F1B766F2D8EFE122916,
|
||||
0x1ECBA28141E84AB4ECAD92F56720E2CC83EB3D22DEC72479,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db1"
|
||||
"2e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a"
|
||||
"91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db3"
|
||||
"26ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63"
|
||||
"f4",
|
||||
16,
|
||||
),
|
||||
0x3E53EF8D3112AF3285C0E74842090712CD324832D4277AE7,
|
||||
0xCC75F8952D30AEC2CBB719FC6AA9934590B5D0FF5A83ADB7,
|
||||
0x8285261607283BA18F335026130BAB31840DCFD9C3E555AF,
|
||||
0x356D89E1B04541AFC9704A45E9C535CE4A50929E33D7E06C,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911"
|
||||
"b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cd"
|
||||
"d41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d30"
|
||||
"3f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42"
|
||||
"dd",
|
||||
16,
|
||||
),
|
||||
0x16335DBE95F8E8254A4E04575D736BEFB258B8657F773CB7,
|
||||
0x421B13379C59BC9DCE38A1099CA79BBD06D647C7F6242336,
|
||||
0x4141BD5D64EA36C5B0BD21EF28C02DA216ED9D04522B1E91,
|
||||
0x159A6AA852BCC579E821B7BB0994C0861FB08280C38DAA09,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b56309"
|
||||
"7ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8"
|
||||
"bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447"
|
||||
"bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd"
|
||||
"8a",
|
||||
16,
|
||||
),
|
||||
0xFD14CDF1607F5EFB7B1793037B15BDF4BAA6F7C16341AB0B,
|
||||
0x83FA0795CC6C4795B9016DAC928FD6BAC32F3229A96312C4,
|
||||
0x8DFDB832951E0167C5D762A473C0416C5C15BC1195667DC1,
|
||||
0x1720288A2DC13FA1EC78F763F8FE2FF7354A7E6FDDE44520,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d3919"
|
||||
"2e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196"
|
||||
"683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bc"
|
||||
"eae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072"
|
||||
"fb",
|
||||
16,
|
||||
),
|
||||
0x674F941DC1A1F8B763C9334D726172D527B90CA324DB8828,
|
||||
0x65ADFA32E8B236CB33A3E84CF59BFB9417AE7E8EDE57A7FF,
|
||||
0x9508B9FDD7DAF0D8126F9E2BC5A35E4C6D800B5B804D7796,
|
||||
0x36F2BF6B21B987C77B53BB801B3435A577E3D493744BFAB0,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397c"
|
||||
"e15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aa"
|
||||
"e98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc"
|
||||
"55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca"
|
||||
"6d",
|
||||
16,
|
||||
),
|
||||
0x10ECCA1AAD7220B56A62008B35170BFD5E35885C4014A19F,
|
||||
0x04EB61984C6C12ADE3BC47F3C629ECE7AA0A033B9948D686,
|
||||
0x82BFA4E82C0DFE9274169B86694E76CE993FD83B5C60F325,
|
||||
0xA97685676C59A65DBDE002FE9D613431FB183E8006D05633,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f"
|
||||
"698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98"
|
||||
"f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a2"
|
||||
"78461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76"
|
||||
"e1",
|
||||
16,
|
||||
),
|
||||
0x6636653CB5B894CA65C448277B29DA3AD101C4C2300F7C04,
|
||||
0xFDF1CBB3FC3FD6A4F890B59E554544175FA77DBDBEB656C1,
|
||||
0xEAC2DDECDDFB79931A9C3D49C08DE0645C783A24CB365E1C,
|
||||
0x3549FEE3CFA7E5F93BC47D92D8BA100E881A2A93C22F8D50,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6"
|
||||
"c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7"
|
||||
"a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b"
|
||||
"9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6b"
|
||||
"a2",
|
||||
16,
|
||||
),
|
||||
0xA82BD718D01D354001148CD5F69B9EBF38FF6F21898F8AAA,
|
||||
0xE67CEEDE07FC2EBFAFD62462A51E4B6C6B3D5B537B7CAF3E,
|
||||
0x4D292486C620C3DE20856E57D3BB72FCDE4A73AD26376955,
|
||||
0xA85289591A6081D5728825520E62FF1C64F94235C04C7F95,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a"
|
||||
"961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc91"
|
||||
"0250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53"
|
||||
"808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb6"
|
||||
"58",
|
||||
16,
|
||||
),
|
||||
0x7D3B016B57758B160C4FCA73D48DF07AE3B6B30225126C2F,
|
||||
0x4AF3790D9775742BDE46F8DA876711BE1B65244B2B39E7EC,
|
||||
0x95F778F5F656511A5AB49A5D69DDD0929563C29CBC3A9E62,
|
||||
0x75C87FC358C251B4C83D2DD979FAAD496B539F9F2EE7A289,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e102"
|
||||
"88acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c9"
|
||||
"0a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9e"
|
||||
"a387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c9"
|
||||
"7a",
|
||||
16,
|
||||
),
|
||||
0x9362F28C4EF96453D8A2F849F21E881CD7566887DA8BEB4A,
|
||||
0xE64D26D8D74C48A024AE85D982EE74CD16046F4EE5333905,
|
||||
0xF3923476A296C88287E8DE914B0B324AD5A963319A4FE73B,
|
||||
0xF0BAEED7624ED00D15244D8BA2AEDE085517DBDEC8AC65F5,
|
||||
True,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f645"
|
||||
"0d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d90"
|
||||
"64e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8c"
|
||||
"e1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd045"
|
||||
"6d",
|
||||
16,
|
||||
),
|
||||
0xCC6FC032A846AAAC25533EB033522824F94E670FA997ECEF,
|
||||
0xE25463EF77A029ECCDA8B294FD63DD694E38D223D30862F1,
|
||||
0x066B1D07F3A40E679B620EDA7F550842A35C18B80C5EBE06,
|
||||
0xA0B0FB201E8F2DF65E2C4508EF303BDC90D934016F16B2DC,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae"
|
||||
"5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214e"
|
||||
"ed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c4"
|
||||
"40341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839"
|
||||
"d7",
|
||||
16,
|
||||
),
|
||||
0x955C908FE900A996F7E2089BEE2F6376830F76A19135E753,
|
||||
0xBA0C42A91D3847DE4A592A46DC3FDAF45A7CC709B90DE520,
|
||||
0x1F58AD77FC04C782815A1405B0925E72095D906CBF52A668,
|
||||
0xF2E93758B3AF75EDF784F05A6761C9B9A6043C66B845B599,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf99866"
|
||||
"70a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b412"
|
||||
"69bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52"
|
||||
"e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160ce"
|
||||
"f3",
|
||||
16,
|
||||
),
|
||||
0x31F7FA05576D78A949B24812D4383107A9A45BB5FCCDD835,
|
||||
0x8DC0EB65994A90F02B5E19BD18B32D61150746C09107E76B,
|
||||
0xBE26D59E4E883DDE7C286614A767B31E49AD88789D3A78FF,
|
||||
0x8762CA831C1CE42DF77893C9B03119428E7A9B819B619068,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f"
|
||||
"387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add502357"
|
||||
"2720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670"
|
||||
"716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1",
|
||||
16,
|
||||
),
|
||||
0x66AA8EDBBDB5CF8E28CEB51B5BDA891CAE2DF84819FE25C0,
|
||||
0x0C6BC2F69030A7CE58D4A00E3B3349844784A13B8936F8DA,
|
||||
0xA4661E69B1734F4A71B788410A464B71E7FFE42334484F23,
|
||||
0x738421CF5E049159D69C57A915143E226CAC8355E149AFE9,
|
||||
False,
|
||||
),
|
||||
(
|
||||
generator_192,
|
||||
int(
|
||||
"0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5af"
|
||||
"a261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461"
|
||||
"184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6d"
|
||||
"b377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fb",
|
||||
16,
|
||||
),
|
||||
0xBCFACF45139B6F5F690A4C35A5FFFA498794136A2353FC77,
|
||||
0x6F4A6C906316A6AFC6D98FE1F0399D056F128FE0270B0F22,
|
||||
0x9DB679A3DAFE48F7CCAD122933ACFE9DA0970B71C94C21C1,
|
||||
0x984C2DB99827576C0A41A5DA41E07D8CC768BC82F18C9DA9,
|
||||
False,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("gen,msg,qx,qy,r,s,expected", CURVE_192_KATS)
|
||||
def test_signature_validity(gen, msg, qx, qy, r, s, expected):
|
||||
"""
|
||||
`msg` = message, `qx` and `qy` represent the base point on
|
||||
elliptic curve of `gen`, `r` and `s` are the signature, and
|
||||
`expected` is True iff the signature is expected to be valid."""
|
||||
pubk = Public_key(gen, ellipticcurve.Point(gen.curve(), qx, qy))
|
||||
assert expected == pubk.verifies(digest_integer(msg), Signature(r, s))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"gen,msg,qx,qy,r,s,expected", [x for x in CURVE_192_KATS if x[6]]
|
||||
)
|
||||
def test_pk_recovery(gen, msg, r, s, qx, qy, expected):
|
||||
del expected
|
||||
sign = Signature(r, s)
|
||||
pks = sign.recover_public_keys(digest_integer(msg), gen)
|
||||
|
||||
assert pks
|
||||
|
||||
# Test if the signature is valid for all found public keys
|
||||
for pk in pks:
|
||||
q = pk.point
|
||||
test_signature_validity(gen, msg, q.x(), q.y(), r, s, True)
|
||||
|
||||
# Test if the original public key is in the set of found keys
|
||||
original_q = ellipticcurve.Point(gen.curve(), qx, qy)
|
||||
points = [pk.point for pk in pks]
|
||||
assert original_q in points
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_random_gen_key_msg_nonce(draw):
|
||||
"""Hypothesis strategy for test_sig_verify()."""
|
||||
name_gen = {
|
||||
"generator_192": generator_192,
|
||||
"generator_224": generator_224,
|
||||
"generator_256": generator_256,
|
||||
"generator_secp256k1": generator_secp256k1,
|
||||
"generator_384": generator_384,
|
||||
"generator_521": generator_521,
|
||||
}
|
||||
name = draw(st.sampled_from(sorted(name_gen.keys())))
|
||||
note("Generator used: {0}".format(name))
|
||||
generator = name_gen[name]
|
||||
order = int(generator.order())
|
||||
|
||||
key = draw(st.integers(min_value=1, max_value=order))
|
||||
msg = draw(st.integers(min_value=1, max_value=order))
|
||||
nonce = draw(
|
||||
st.integers(min_value=1, max_value=order + 1)
|
||||
| st.integers(min_value=order >> 1, max_value=order)
|
||||
)
|
||||
return generator, key, msg, nonce
|
||||
|
||||
|
||||
SIG_VER_SETTINGS = dict(HYP_SETTINGS)
|
||||
SIG_VER_SETTINGS["max_examples"] = 10
|
||||
|
||||
|
||||
@settings(**SIG_VER_SETTINGS)
|
||||
@example((generator_224, 4, 1, 1))
|
||||
@given(st_random_gen_key_msg_nonce())
|
||||
def test_sig_verify(args):
|
||||
"""
|
||||
Check if signing and verification works for arbitrary messages and
|
||||
that signatures for other messages are rejected.
|
||||
"""
|
||||
generator, sec_mult, msg, nonce = args
|
||||
|
||||
pubkey = Public_key(generator, generator * sec_mult)
|
||||
privkey = Private_key(pubkey, sec_mult)
|
||||
|
||||
signature = privkey.sign(msg, nonce)
|
||||
|
||||
assert pubkey.verifies(msg, signature)
|
||||
|
||||
assert not pubkey.verifies(msg - 1, signature)
|
||||
|
||||
|
||||
def test_int_to_string_with_zero():
|
||||
assert int_to_string(0) == b"\x00"
|
||||
1079
dist/ba_data/python-site-packages/ecdsa/test_eddsa.py
vendored
1079
dist/ba_data/python-site-packages/ecdsa/test_eddsa.py
vendored
File diff suppressed because it is too large
Load diff
|
|
@ -1,199 +0,0 @@
|
|||
import pytest
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
from hypothesis import given, settings
|
||||
import hypothesis.strategies as st
|
||||
|
||||
try:
|
||||
from hypothesis import HealthCheck
|
||||
|
||||
HC_PRESENT = True
|
||||
except ImportError: # pragma: no cover
|
||||
HC_PRESENT = False
|
||||
from .numbertheory import inverse_mod
|
||||
from .ellipticcurve import CurveFp, INFINITY, Point
|
||||
|
||||
|
||||
HYP_SETTINGS = {}
|
||||
if HC_PRESENT: # pragma: no branch
|
||||
HYP_SETTINGS["suppress_health_check"] = [HealthCheck.too_slow]
|
||||
HYP_SETTINGS["deadline"] = 5000
|
||||
|
||||
|
||||
# NIST Curve P-192:
|
||||
p = 6277101735386680763835789423207666416083908700390324961279
|
||||
r = 6277101735386680763835789423176059013767194773182842284081
|
||||
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5
|
||||
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
|
||||
b = 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1
|
||||
Gx = 0x188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012
|
||||
Gy = 0x07192B95FFC8DA78631011ED6B24CDD573F977A11E794811
|
||||
|
||||
c192 = CurveFp(p, -3, b)
|
||||
p192 = Point(c192, Gx, Gy, r)
|
||||
|
||||
c_23 = CurveFp(23, 1, 1)
|
||||
g_23 = Point(c_23, 13, 7, 7)
|
||||
|
||||
|
||||
HYP_SLOW_SETTINGS = dict(HYP_SETTINGS)
|
||||
HYP_SLOW_SETTINGS["max_examples"] = 10
|
||||
|
||||
|
||||
@settings(**HYP_SLOW_SETTINGS)
|
||||
@given(st.integers(min_value=1, max_value=r + 1))
|
||||
def test_p192_mult_tests(multiple):
|
||||
inv_m = inverse_mod(multiple, r)
|
||||
|
||||
p1 = p192 * multiple
|
||||
assert p1 * inv_m == p192
|
||||
|
||||
|
||||
def add_n_times(point, n):
|
||||
ret = INFINITY
|
||||
i = 0
|
||||
while i <= n:
|
||||
yield ret
|
||||
ret = ret + point
|
||||
i += 1
|
||||
|
||||
|
||||
# From X9.62 I.1 (p. 96):
|
||||
@pytest.mark.parametrize(
|
||||
"p, m, check",
|
||||
[(g_23, n, exp) for n, exp in enumerate(add_n_times(g_23, 8))],
|
||||
ids=["g_23 test with mult {0}".format(i) for i in range(9)],
|
||||
)
|
||||
def test_add_and_mult_equivalence(p, m, check):
|
||||
assert p * m == check
|
||||
|
||||
|
||||
class TestCurve(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.c_23 = CurveFp(23, 1, 1)
|
||||
|
||||
def test_equality_curves(self):
|
||||
self.assertEqual(self.c_23, CurveFp(23, 1, 1))
|
||||
|
||||
def test_inequality_curves(self):
|
||||
c192 = CurveFp(p, -3, b)
|
||||
self.assertNotEqual(self.c_23, c192)
|
||||
|
||||
def test_usability_in_a_hashed_collection_curves(self):
|
||||
{self.c_23: None}
|
||||
|
||||
def test_hashability_curves(self):
|
||||
hash(self.c_23)
|
||||
|
||||
def test_conflation_curves(self):
|
||||
ne1, ne2, ne3 = CurveFp(24, 1, 1), CurveFp(23, 2, 1), CurveFp(23, 1, 2)
|
||||
eq1, eq2, eq3 = CurveFp(23, 1, 1), CurveFp(23, 1, 1), self.c_23
|
||||
self.assertEqual(len(set((c_23, eq1, eq2, eq3))), 1)
|
||||
self.assertEqual(len(set((c_23, ne1, ne2, ne3))), 4)
|
||||
self.assertDictEqual({c_23: None}, {eq1: None})
|
||||
self.assertIn(eq2, {eq3: None})
|
||||
|
||||
|
||||
class TestPoint(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.c_23 = CurveFp(23, 1, 1)
|
||||
cls.g_23 = Point(cls.c_23, 13, 7, 7)
|
||||
|
||||
p = 6277101735386680763835789423207666416083908700390324961279
|
||||
r = 6277101735386680763835789423176059013767194773182842284081
|
||||
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5
|
||||
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
|
||||
b = 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1
|
||||
Gx = 0x188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012
|
||||
Gy = 0x07192B95FFC8DA78631011ED6B24CDD573F977A11E794811
|
||||
|
||||
cls.c192 = CurveFp(p, -3, b)
|
||||
cls.p192 = Point(cls.c192, Gx, Gy, r)
|
||||
|
||||
def test_p192(self):
|
||||
# Checking against some sample computations presented
|
||||
# in X9.62:
|
||||
d = 651056770906015076056810763456358567190100156695615665659
|
||||
Q = d * self.p192
|
||||
self.assertEqual(
|
||||
Q.x(), 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5
|
||||
)
|
||||
|
||||
k = 6140507067065001063065065565667405560006161556565665656654
|
||||
R = k * self.p192
|
||||
self.assertEqual(
|
||||
R.x(), 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD
|
||||
)
|
||||
self.assertEqual(
|
||||
R.y(), 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835
|
||||
)
|
||||
|
||||
u1 = 2563697409189434185194736134579731015366492496392189760599
|
||||
u2 = 6266643813348617967186477710235785849136406323338782220568
|
||||
temp = u1 * self.p192 + u2 * Q
|
||||
self.assertEqual(
|
||||
temp.x(), 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD
|
||||
)
|
||||
self.assertEqual(
|
||||
temp.y(), 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835
|
||||
)
|
||||
|
||||
def test_double_infinity(self):
|
||||
p1 = INFINITY
|
||||
p3 = p1.double()
|
||||
self.assertEqual(p1, p3)
|
||||
self.assertEqual(p3.x(), p1.x())
|
||||
self.assertEqual(p3.y(), p3.y())
|
||||
|
||||
def test_double(self):
|
||||
x1, y1, x3, y3 = (3, 10, 7, 12)
|
||||
|
||||
p1 = Point(self.c_23, x1, y1)
|
||||
p3 = p1.double()
|
||||
self.assertEqual(p3.x(), x3)
|
||||
self.assertEqual(p3.y(), y3)
|
||||
|
||||
def test_multiply(self):
|
||||
x1, y1, m, x3, y3 = (3, 10, 2, 7, 12)
|
||||
p1 = Point(self.c_23, x1, y1)
|
||||
p3 = p1 * m
|
||||
self.assertEqual(p3.x(), x3)
|
||||
self.assertEqual(p3.y(), y3)
|
||||
|
||||
# Trivial tests from X9.62 B.3:
|
||||
def test_add(self):
|
||||
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
|
||||
|
||||
x1, y1, x2, y2, x3, y3 = (3, 10, 9, 7, 17, 20)
|
||||
p1 = Point(self.c_23, x1, y1)
|
||||
p2 = Point(self.c_23, x2, y2)
|
||||
p3 = p1 + p2
|
||||
self.assertEqual(p3.x(), x3)
|
||||
self.assertEqual(p3.y(), y3)
|
||||
|
||||
def test_add_as_double(self):
|
||||
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
|
||||
|
||||
x1, y1, x2, y2, x3, y3 = (3, 10, 3, 10, 7, 12)
|
||||
p1 = Point(self.c_23, x1, y1)
|
||||
p2 = Point(self.c_23, x2, y2)
|
||||
p3 = p1 + p2
|
||||
self.assertEqual(p3.x(), x3)
|
||||
self.assertEqual(p3.y(), y3)
|
||||
|
||||
def test_equality_points(self):
|
||||
self.assertEqual(self.g_23, Point(self.c_23, 13, 7, 7))
|
||||
|
||||
def test_inequality_points(self):
|
||||
c = CurveFp(100, -3, 100)
|
||||
p = Point(c, 100, 100, 100)
|
||||
self.assertNotEqual(self.g_23, p)
|
||||
|
||||
def test_inequality_points_diff_types(self):
|
||||
c = CurveFp(100, -3, 100)
|
||||
self.assertNotEqual(self.g_23, c)
|
||||
|
|
@ -1,657 +0,0 @@
|
|||
import pickle
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
|
||||
import os
|
||||
import sys
|
||||
import signal
|
||||
import pytest
|
||||
import threading
|
||||
import platform
|
||||
import hypothesis.strategies as st
|
||||
from hypothesis import given, assume, settings, example
|
||||
|
||||
from .ellipticcurve import CurveFp, PointJacobi, INFINITY
|
||||
from .ecdsa import (
|
||||
generator_256,
|
||||
curve_256,
|
||||
generator_224,
|
||||
generator_brainpoolp160r1,
|
||||
curve_brainpoolp160r1,
|
||||
generator_112r2,
|
||||
)
|
||||
from .numbertheory import inverse_mod
|
||||
from .util import randrange
|
||||
|
||||
|
||||
NO_OLD_SETTINGS = {}
|
||||
if sys.version_info > (2, 7): # pragma: no branch
|
||||
NO_OLD_SETTINGS["deadline"] = 5000
|
||||
|
||||
|
||||
class TestJacobi(unittest.TestCase):
|
||||
def test___init__(self):
|
||||
curve = object()
|
||||
x = 2
|
||||
y = 3
|
||||
z = 1
|
||||
order = 4
|
||||
pj = PointJacobi(curve, x, y, z, order)
|
||||
|
||||
self.assertEqual(pj.order(), order)
|
||||
self.assertIs(pj.curve(), curve)
|
||||
self.assertEqual(pj.x(), x)
|
||||
self.assertEqual(pj.y(), y)
|
||||
|
||||
def test_add_with_different_curves(self):
|
||||
p_a = PointJacobi.from_affine(generator_256)
|
||||
p_b = PointJacobi.from_affine(generator_224)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
p_a + p_b
|
||||
|
||||
def test_compare_different_curves(self):
|
||||
self.assertNotEqual(generator_256, generator_224)
|
||||
|
||||
def test_equality_with_non_point(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
|
||||
self.assertNotEqual(pj, "value")
|
||||
|
||||
def test_conversion(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pw = pj.to_affine()
|
||||
|
||||
self.assertEqual(generator_256, pw)
|
||||
|
||||
def test_single_double(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pw = generator_256.double()
|
||||
|
||||
pj = pj.double()
|
||||
|
||||
self.assertEqual(pj.x(), pw.x())
|
||||
self.assertEqual(pj.y(), pw.y())
|
||||
|
||||
def test_double_with_zero_point(self):
|
||||
pj = PointJacobi(curve_256, 0, 0, 1)
|
||||
|
||||
pj = pj.double()
|
||||
|
||||
self.assertIs(pj, INFINITY)
|
||||
|
||||
def test_double_with_zero_equivalent_point(self):
|
||||
pj = PointJacobi(curve_256, 0, curve_256.p(), 1)
|
||||
|
||||
pj = pj.double()
|
||||
|
||||
self.assertIs(pj, INFINITY)
|
||||
|
||||
def test_double_with_zero_equivalent_point_non_1_z(self):
|
||||
pj = PointJacobi(curve_256, 0, curve_256.p(), 2)
|
||||
|
||||
pj = pj.double()
|
||||
|
||||
self.assertIs(pj, INFINITY)
|
||||
|
||||
def test_compare_with_affine_point(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pa = pj.to_affine()
|
||||
|
||||
self.assertEqual(pj, pa)
|
||||
self.assertEqual(pa, pj)
|
||||
|
||||
def test_to_affine_with_zero_point(self):
|
||||
pj = PointJacobi(curve_256, 0, 0, 1)
|
||||
|
||||
pa = pj.to_affine()
|
||||
|
||||
self.assertIs(pa, INFINITY)
|
||||
|
||||
def test_add_with_affine_point(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pa = pj.to_affine()
|
||||
|
||||
s = pj + pa
|
||||
|
||||
self.assertEqual(s, pj.double())
|
||||
|
||||
def test_radd_with_affine_point(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pa = pj.to_affine()
|
||||
|
||||
s = pa + pj
|
||||
|
||||
self.assertEqual(s, pj.double())
|
||||
|
||||
def test_add_with_infinity(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
|
||||
s = pj + INFINITY
|
||||
|
||||
self.assertEqual(s, pj)
|
||||
|
||||
def test_add_zero_point_to_affine(self):
|
||||
pa = PointJacobi.from_affine(generator_256).to_affine()
|
||||
pj = PointJacobi(curve_256, 0, 0, 1)
|
||||
|
||||
s = pj + pa
|
||||
|
||||
self.assertIs(s, pa)
|
||||
|
||||
def test_multiply_by_zero(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
|
||||
pj = pj * 0
|
||||
|
||||
self.assertIs(pj, INFINITY)
|
||||
|
||||
def test_zero_point_multiply_by_one(self):
|
||||
pj = PointJacobi(curve_256, 0, 0, 1)
|
||||
|
||||
pj = pj * 1
|
||||
|
||||
self.assertIs(pj, INFINITY)
|
||||
|
||||
def test_multiply_by_one(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pw = generator_256 * 1
|
||||
|
||||
pj = pj * 1
|
||||
|
||||
self.assertEqual(pj.x(), pw.x())
|
||||
self.assertEqual(pj.y(), pw.y())
|
||||
|
||||
def test_multiply_by_two(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pw = generator_256 * 2
|
||||
|
||||
pj = pj * 2
|
||||
|
||||
self.assertEqual(pj.x(), pw.x())
|
||||
self.assertEqual(pj.y(), pw.y())
|
||||
|
||||
def test_rmul_by_two(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
pw = generator_256 * 2
|
||||
|
||||
pj = 2 * pj
|
||||
|
||||
self.assertEqual(pj, pw)
|
||||
|
||||
def test_compare_non_zero_with_infinity(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
|
||||
self.assertNotEqual(pj, INFINITY)
|
||||
|
||||
def test_compare_zero_point_with_infinity(self):
|
||||
pj = PointJacobi(curve_256, 0, 0, 1)
|
||||
|
||||
self.assertEqual(pj, INFINITY)
|
||||
|
||||
def test_compare_double_with_multiply(self):
|
||||
pj = PointJacobi.from_affine(generator_256)
|
||||
dbl = pj.double()
|
||||
mlpl = pj * 2
|
||||
|
||||
self.assertEqual(dbl, mlpl)
|
||||
|
||||
@settings(max_examples=10)
|
||||
@given(
|
||||
st.integers(
|
||||
min_value=0, max_value=int(generator_brainpoolp160r1.order())
|
||||
)
|
||||
)
|
||||
def test_multiplications(self, mul):
|
||||
pj = PointJacobi.from_affine(generator_brainpoolp160r1)
|
||||
pw = pj.to_affine() * mul
|
||||
|
||||
pj = pj * mul
|
||||
|
||||
self.assertEqual((pj.x(), pj.y()), (pw.x(), pw.y()))
|
||||
self.assertEqual(pj, pw)
|
||||
|
||||
@settings(max_examples=10)
|
||||
@given(
|
||||
st.integers(
|
||||
min_value=0, max_value=int(generator_brainpoolp160r1.order())
|
||||
)
|
||||
)
|
||||
@example(0)
|
||||
@example(int(generator_brainpoolp160r1.order()))
|
||||
def test_precompute(self, mul):
|
||||
precomp = generator_brainpoolp160r1
|
||||
self.assertTrue(precomp._PointJacobi__precompute)
|
||||
pj = PointJacobi.from_affine(generator_brainpoolp160r1)
|
||||
|
||||
a = precomp * mul
|
||||
b = pj * mul
|
||||
|
||||
self.assertEqual(a, b)
|
||||
|
||||
@settings(max_examples=10)
|
||||
@given(
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
)
|
||||
@example(3, 3)
|
||||
def test_add_scaled_points(self, a_mul, b_mul):
|
||||
j_g = PointJacobi.from_affine(generator_brainpoolp160r1)
|
||||
a = PointJacobi.from_affine(j_g * a_mul)
|
||||
b = PointJacobi.from_affine(j_g * b_mul)
|
||||
|
||||
c = a + b
|
||||
|
||||
self.assertEqual(c, j_g * (a_mul + b_mul))
|
||||
|
||||
@settings(max_examples=10)
|
||||
@given(
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.integers(min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1)),
|
||||
)
|
||||
def test_add_one_scaled_point(self, a_mul, b_mul, new_z):
|
||||
j_g = PointJacobi.from_affine(generator_brainpoolp160r1)
|
||||
a = PointJacobi.from_affine(j_g * a_mul)
|
||||
b = PointJacobi.from_affine(j_g * b_mul)
|
||||
|
||||
p = curve_brainpoolp160r1.p()
|
||||
|
||||
assume(inverse_mod(new_z, p))
|
||||
|
||||
new_zz = new_z * new_z % p
|
||||
|
||||
b = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
b.x() * new_zz % p,
|
||||
b.y() * new_zz * new_z % p,
|
||||
new_z,
|
||||
)
|
||||
|
||||
c = a + b
|
||||
|
||||
self.assertEqual(c, j_g * (a_mul + b_mul))
|
||||
|
||||
@settings(max_examples=10)
|
||||
@given(
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.integers(min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1)),
|
||||
)
|
||||
@example(1, 1, 1)
|
||||
@example(3, 3, 3)
|
||||
@example(2, int(generator_brainpoolp160r1.order() - 2), 1)
|
||||
@example(2, int(generator_brainpoolp160r1.order() - 2), 3)
|
||||
def test_add_same_scale_points(self, a_mul, b_mul, new_z):
|
||||
j_g = PointJacobi.from_affine(generator_brainpoolp160r1)
|
||||
a = PointJacobi.from_affine(j_g * a_mul)
|
||||
b = PointJacobi.from_affine(j_g * b_mul)
|
||||
|
||||
p = curve_brainpoolp160r1.p()
|
||||
|
||||
assume(inverse_mod(new_z, p))
|
||||
|
||||
new_zz = new_z * new_z % p
|
||||
|
||||
a = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
a.x() * new_zz % p,
|
||||
a.y() * new_zz * new_z % p,
|
||||
new_z,
|
||||
)
|
||||
b = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
b.x() * new_zz % p,
|
||||
b.y() * new_zz * new_z % p,
|
||||
new_z,
|
||||
)
|
||||
|
||||
c = a + b
|
||||
|
||||
self.assertEqual(c, j_g * (a_mul + b_mul))
|
||||
|
||||
def test_add_same_scale_points_static(self):
|
||||
j_g = generator_brainpoolp160r1
|
||||
p = curve_brainpoolp160r1.p()
|
||||
a = j_g * 11
|
||||
a.scale()
|
||||
z1 = 13
|
||||
x = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
a.x() * z1**2 % p,
|
||||
a.y() * z1**3 % p,
|
||||
z1,
|
||||
)
|
||||
y = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
a.x() * z1**2 % p,
|
||||
a.y() * z1**3 % p,
|
||||
z1,
|
||||
)
|
||||
|
||||
c = a + a
|
||||
|
||||
self.assertEqual(c, x + y)
|
||||
|
||||
@settings(max_examples=14)
|
||||
@given(
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.integers(
|
||||
min_value=1, max_value=int(generator_brainpoolp160r1.order())
|
||||
),
|
||||
st.lists(
|
||||
st.integers(
|
||||
min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1)
|
||||
),
|
||||
min_size=2,
|
||||
max_size=2,
|
||||
unique=True,
|
||||
),
|
||||
)
|
||||
@example(2, 2, [2, 1])
|
||||
@example(2, 2, [2, 3])
|
||||
@example(2, int(generator_brainpoolp160r1.order() - 2), [2, 3])
|
||||
@example(2, int(generator_brainpoolp160r1.order() - 2), [2, 1])
|
||||
def test_add_different_scale_points(self, a_mul, b_mul, new_z):
|
||||
j_g = PointJacobi.from_affine(generator_brainpoolp160r1)
|
||||
a = PointJacobi.from_affine(j_g * a_mul)
|
||||
b = PointJacobi.from_affine(j_g * b_mul)
|
||||
|
||||
p = curve_brainpoolp160r1.p()
|
||||
|
||||
assume(inverse_mod(new_z[0], p))
|
||||
assume(inverse_mod(new_z[1], p))
|
||||
|
||||
new_zz0 = new_z[0] * new_z[0] % p
|
||||
new_zz1 = new_z[1] * new_z[1] % p
|
||||
|
||||
a = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
a.x() * new_zz0 % p,
|
||||
a.y() * new_zz0 * new_z[0] % p,
|
||||
new_z[0],
|
||||
)
|
||||
b = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
b.x() * new_zz1 % p,
|
||||
b.y() * new_zz1 * new_z[1] % p,
|
||||
new_z[1],
|
||||
)
|
||||
|
||||
c = a + b
|
||||
|
||||
self.assertEqual(c, j_g * (a_mul + b_mul))
|
||||
|
||||
def test_add_different_scale_points_static(self):
|
||||
j_g = generator_brainpoolp160r1
|
||||
p = curve_brainpoolp160r1.p()
|
||||
a = j_g * 11
|
||||
a.scale()
|
||||
z1 = 13
|
||||
x = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
a.x() * z1**2 % p,
|
||||
a.y() * z1**3 % p,
|
||||
z1,
|
||||
)
|
||||
z2 = 29
|
||||
y = PointJacobi(
|
||||
curve_brainpoolp160r1,
|
||||
a.x() * z2**2 % p,
|
||||
a.y() * z2**3 % p,
|
||||
z2,
|
||||
)
|
||||
|
||||
c = a + a
|
||||
|
||||
self.assertEqual(c, x + y)
|
||||
|
||||
def test_add_point_3_times(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
self.assertEqual(j_g * 3, j_g + j_g + j_g)
|
||||
|
||||
def test_mul_without_order(self):
|
||||
j_g = PointJacobi(curve_256, generator_256.x(), generator_256.y(), 1)
|
||||
|
||||
self.assertEqual(j_g * generator_256.order(), INFINITY)
|
||||
|
||||
def test_mul_add_inf(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
self.assertEqual(j_g, j_g.mul_add(1, INFINITY, 1))
|
||||
|
||||
def test_mul_add_same(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
self.assertEqual(j_g * 2, j_g.mul_add(1, j_g, 1))
|
||||
|
||||
def test_mul_add_precompute(self):
|
||||
j_g = PointJacobi.from_affine(generator_brainpoolp160r1, True)
|
||||
b = PointJacobi.from_affine(j_g * 255, True)
|
||||
|
||||
self.assertEqual(j_g * 256, j_g + b)
|
||||
self.assertEqual(j_g * (5 + 255 * 7), j_g * 5 + b * 7)
|
||||
self.assertEqual(j_g * (5 + 255 * 7), j_g.mul_add(5, b, 7))
|
||||
|
||||
def test_mul_add_precompute_large(self):
|
||||
j_g = PointJacobi.from_affine(generator_brainpoolp160r1, True)
|
||||
b = PointJacobi.from_affine(j_g * 255, True)
|
||||
|
||||
self.assertEqual(j_g * 256, j_g + b)
|
||||
self.assertEqual(
|
||||
j_g * (0xFF00 + 255 * 0xF0F0), j_g * 0xFF00 + b * 0xF0F0
|
||||
)
|
||||
self.assertEqual(
|
||||
j_g * (0xFF00 + 255 * 0xF0F0), j_g.mul_add(0xFF00, b, 0xF0F0)
|
||||
)
|
||||
|
||||
def test_mul_add_to_mul(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
a = j_g * 3
|
||||
b = j_g.mul_add(2, j_g, 1)
|
||||
|
||||
self.assertEqual(a, b)
|
||||
|
||||
def test_mul_add_differnt(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
w_a = j_g * 2
|
||||
|
||||
self.assertEqual(j_g.mul_add(1, w_a, 1), j_g * 3)
|
||||
|
||||
def test_mul_add_slightly_different(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
w_a = j_g * 2
|
||||
w_b = j_g * 3
|
||||
|
||||
self.assertEqual(w_a.mul_add(1, w_b, 3), w_a * 1 + w_b * 3)
|
||||
|
||||
def test_mul_add(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
w_a = generator_256 * 255
|
||||
w_b = generator_256 * (0xA8 * 0xF0)
|
||||
j_b = j_g * 0xA8
|
||||
|
||||
ret = j_g.mul_add(255, j_b, 0xF0)
|
||||
|
||||
self.assertEqual(ret.to_affine(), w_a + w_b)
|
||||
|
||||
def test_mul_add_large(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
b = PointJacobi.from_affine(j_g * 255)
|
||||
|
||||
self.assertEqual(j_g * 256, j_g + b)
|
||||
self.assertEqual(
|
||||
j_g * (0xFF00 + 255 * 0xF0F0), j_g * 0xFF00 + b * 0xF0F0
|
||||
)
|
||||
self.assertEqual(
|
||||
j_g * (0xFF00 + 255 * 0xF0F0), j_g.mul_add(0xFF00, b, 0xF0F0)
|
||||
)
|
||||
|
||||
def test_mul_add_with_infinity_as_result(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
order = generator_256.order()
|
||||
|
||||
b = PointJacobi.from_affine(generator_256 * 256)
|
||||
|
||||
self.assertEqual(j_g.mul_add(order % 256, b, order // 256), INFINITY)
|
||||
|
||||
def test_mul_add_without_order(self):
|
||||
j_g = PointJacobi(curve_256, generator_256.x(), generator_256.y(), 1)
|
||||
|
||||
order = generator_256.order()
|
||||
|
||||
w_b = generator_256 * 34
|
||||
w_b.scale()
|
||||
|
||||
b = PointJacobi(curve_256, w_b.x(), w_b.y(), 1)
|
||||
|
||||
self.assertEqual(j_g.mul_add(order % 34, b, order // 34), INFINITY)
|
||||
|
||||
def test_mul_add_with_doubled_negation_of_itself(self):
|
||||
j_g = PointJacobi.from_affine(generator_256 * 17)
|
||||
|
||||
dbl_neg = 2 * (-j_g)
|
||||
|
||||
self.assertEqual(j_g.mul_add(4, dbl_neg, 2), INFINITY)
|
||||
|
||||
def test_equality(self):
|
||||
pj1 = PointJacobi(curve=CurveFp(23, 1, 1, 1), x=2, y=3, z=1, order=1)
|
||||
pj2 = PointJacobi(curve=CurveFp(23, 1, 1, 1), x=2, y=3, z=1, order=1)
|
||||
self.assertEqual(pj1, pj2)
|
||||
|
||||
def test_equality_with_invalid_object(self):
|
||||
j_g = PointJacobi.from_affine(generator_256)
|
||||
|
||||
self.assertNotEqual(j_g, 12)
|
||||
|
||||
def test_equality_with_wrong_curves(self):
|
||||
p_a = PointJacobi.from_affine(generator_256)
|
||||
p_b = PointJacobi.from_affine(generator_224)
|
||||
|
||||
self.assertNotEqual(p_a, p_b)
|
||||
|
||||
def test_pickle(self):
|
||||
pj = PointJacobi(curve=CurveFp(23, 1, 1, 1), x=2, y=3, z=1, order=1)
|
||||
self.assertEqual(pickle.loads(pickle.dumps(pj)), pj)
|
||||
|
||||
@settings(**NO_OLD_SETTINGS)
|
||||
@given(st.integers(min_value=1, max_value=10))
|
||||
def test_multithreading(self, thread_num):
|
||||
# ensure that generator's precomputation table is filled
|
||||
generator_112r2 * 2
|
||||
|
||||
# create a fresh point that doesn't have a filled precomputation table
|
||||
gen = generator_112r2
|
||||
gen = PointJacobi(gen.curve(), gen.x(), gen.y(), 1, gen.order(), True)
|
||||
|
||||
self.assertEqual(gen._PointJacobi__precompute, [])
|
||||
|
||||
def runner(generator):
|
||||
order = generator.order()
|
||||
for _ in range(10):
|
||||
generator * randrange(order)
|
||||
|
||||
threads = []
|
||||
for _ in range(thread_num):
|
||||
threads.append(threading.Thread(target=runner, args=(gen,)))
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
runner(gen)
|
||||
|
||||
for t in threads:
|
||||
t.join()
|
||||
|
||||
self.assertEqual(
|
||||
gen._PointJacobi__precompute,
|
||||
generator_112r2._PointJacobi__precompute,
|
||||
)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
platform.system() == "Windows",
|
||||
reason="there are no signals on Windows",
|
||||
)
|
||||
def test_multithreading_with_interrupts(self):
|
||||
thread_num = 10
|
||||
# ensure that generator's precomputation table is filled
|
||||
generator_112r2 * 2
|
||||
|
||||
# create a fresh point that doesn't have a filled precomputation table
|
||||
gen = generator_112r2
|
||||
gen = PointJacobi(gen.curve(), gen.x(), gen.y(), 1, gen.order(), True)
|
||||
|
||||
self.assertEqual(gen._PointJacobi__precompute, [])
|
||||
|
||||
def runner(generator):
|
||||
order = generator.order()
|
||||
for _ in range(50):
|
||||
generator * randrange(order)
|
||||
|
||||
def interrupter(barrier_start, barrier_end, lock_exit):
|
||||
# wait until MainThread can handle KeyboardInterrupt
|
||||
barrier_start.release()
|
||||
barrier_end.acquire()
|
||||
os.kill(os.getpid(), signal.SIGINT)
|
||||
lock_exit.release()
|
||||
|
||||
threads = []
|
||||
for _ in range(thread_num):
|
||||
threads.append(threading.Thread(target=runner, args=(gen,)))
|
||||
|
||||
barrier_start = threading.Lock()
|
||||
barrier_start.acquire()
|
||||
barrier_end = threading.Lock()
|
||||
barrier_end.acquire()
|
||||
lock_exit = threading.Lock()
|
||||
lock_exit.acquire()
|
||||
|
||||
threads.append(
|
||||
threading.Thread(
|
||||
target=interrupter,
|
||||
args=(barrier_start, barrier_end, lock_exit),
|
||||
)
|
||||
)
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
with self.assertRaises(KeyboardInterrupt):
|
||||
# signal to interrupter that we can now handle the signal
|
||||
barrier_start.acquire()
|
||||
barrier_end.release()
|
||||
runner(gen)
|
||||
# use the lock to ensure we never go past the scope of
|
||||
# assertRaises before the os.kill is called
|
||||
lock_exit.acquire()
|
||||
|
||||
for t in threads:
|
||||
t.join()
|
||||
|
||||
self.assertEqual(
|
||||
gen._PointJacobi__precompute,
|
||||
generator_112r2._PointJacobi__precompute,
|
||||
)
|
||||
959
dist/ba_data/python-site-packages/ecdsa/test_keys.py
vendored
959
dist/ba_data/python-site-packages/ecdsa/test_keys.py
vendored
|
|
@ -1,959 +0,0 @@
|
|||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
|
||||
try:
|
||||
buffer
|
||||
except NameError:
|
||||
buffer = memoryview
|
||||
|
||||
import os
|
||||
import array
|
||||
import pytest
|
||||
import hashlib
|
||||
|
||||
from .keys import VerifyingKey, SigningKey, MalformedPointError
|
||||
from .der import (
|
||||
unpem,
|
||||
UnexpectedDER,
|
||||
encode_sequence,
|
||||
encode_oid,
|
||||
encode_bitstring,
|
||||
)
|
||||
from .util import (
|
||||
sigencode_string,
|
||||
sigencode_der,
|
||||
sigencode_strings,
|
||||
sigdecode_string,
|
||||
sigdecode_der,
|
||||
sigdecode_strings,
|
||||
)
|
||||
from .curves import NIST256p, Curve, BRAINPOOLP160r1, Ed25519, Ed448
|
||||
from .ellipticcurve import Point, PointJacobi, CurveFp, INFINITY
|
||||
from .ecdsa import generator_brainpoolp160r1
|
||||
|
||||
|
||||
class TestVerifyingKeyFromString(unittest.TestCase):
|
||||
"""
|
||||
Verify that ecdsa.keys.VerifyingKey.from_string() can be used with
|
||||
bytes-like objects
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.key_bytes = (
|
||||
b"\x04L\xa2\x95\xdb\xc7Z\xd7\x1f\x93\nz\xcf\x97\xcf"
|
||||
b"\xd7\xc2\xd9o\xfe8}X!\xae\xd4\xfah\xfa^\rpI\xba\xd1"
|
||||
b"Y\xfb\x92xa\xebo+\x9cG\xfav\xca"
|
||||
)
|
||||
cls.vk = VerifyingKey.from_string(cls.key_bytes)
|
||||
|
||||
def test_bytes(self):
|
||||
self.assertIsNotNone(self.vk)
|
||||
self.assertIsInstance(self.vk, VerifyingKey)
|
||||
self.assertEqual(
|
||||
self.vk.pubkey.point.x(),
|
||||
105419898848891948935835657980914000059957975659675736097,
|
||||
)
|
||||
self.assertEqual(
|
||||
self.vk.pubkey.point.y(),
|
||||
4286866841217412202667522375431381222214611213481632495306,
|
||||
)
|
||||
|
||||
def test_bytes_memoryview(self):
|
||||
vk = VerifyingKey.from_string(buffer(self.key_bytes))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytearray(self):
|
||||
vk = VerifyingKey.from_string(bytearray(self.key_bytes))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytesarray_memoryview(self):
|
||||
vk = VerifyingKey.from_string(buffer(bytearray(self.key_bytes)))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_array_array_of_bytes(self):
|
||||
arr = array.array("B", self.key_bytes)
|
||||
vk = VerifyingKey.from_string(arr)
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_array_array_of_bytes_memoryview(self):
|
||||
arr = array.array("B", self.key_bytes)
|
||||
vk = VerifyingKey.from_string(buffer(arr))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_array_array_of_ints(self):
|
||||
arr = array.array("I", self.key_bytes)
|
||||
vk = VerifyingKey.from_string(arr)
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_array_array_of_ints_memoryview(self):
|
||||
arr = array.array("I", self.key_bytes)
|
||||
vk = VerifyingKey.from_string(buffer(arr))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytes_uncompressed(self):
|
||||
vk = VerifyingKey.from_string(b"\x04" + self.key_bytes)
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytearray_uncompressed(self):
|
||||
vk = VerifyingKey.from_string(bytearray(b"\x04" + self.key_bytes))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytes_compressed(self):
|
||||
vk = VerifyingKey.from_string(b"\x02" + self.key_bytes[:24])
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytearray_compressed(self):
|
||||
vk = VerifyingKey.from_string(bytearray(b"\x02" + self.key_bytes[:24]))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
|
||||
class TestVerifyingKeyFromDer(unittest.TestCase):
|
||||
"""
|
||||
Verify that ecdsa.keys.VerifyingKey.from_der() can be used with
|
||||
bytes-like objects.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
prv_key_str = (
|
||||
"-----BEGIN EC PRIVATE KEY-----\n"
|
||||
"MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n"
|
||||
"BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n"
|
||||
"bA==\n"
|
||||
"-----END EC PRIVATE KEY-----\n"
|
||||
)
|
||||
key_str = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEuIF30ITvF/XkVjlAgCg2D59ZtKTX\n"
|
||||
"Jk5i2gZR3OR6NaTFtFz1FZNCOotVe5wgmfNs\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
cls.key_pem = key_str
|
||||
|
||||
cls.key_bytes = unpem(key_str)
|
||||
assert isinstance(cls.key_bytes, bytes)
|
||||
cls.vk = VerifyingKey.from_pem(key_str)
|
||||
cls.sk = SigningKey.from_pem(prv_key_str)
|
||||
|
||||
key_str = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE4H3iRbG4TSrsSRb/gusPQB/4YcN8\n"
|
||||
"Poqzgjau4kfxBPyZimeRfuY/9g/wMmPuhGl4BUve51DsnKJFRr8psk0ieA==\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
cls.vk2 = VerifyingKey.from_pem(key_str)
|
||||
|
||||
cls.sk2 = SigningKey.generate(vk.curve)
|
||||
|
||||
def test_load_key_with_explicit_parameters(self):
|
||||
pub_key_str = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MIIBSzCCAQMGByqGSM49AgEwgfcCAQEwLAYHKoZIzj0BAQIhAP////8AAAABAAAA\n"
|
||||
"AAAAAAAAAAAA////////////////MFsEIP////8AAAABAAAAAAAAAAAAAAAA////\n"
|
||||
"///////////8BCBaxjXYqjqT57PrvVV2mIa8ZR0GsMxTsPY7zjw+J9JgSwMVAMSd\n"
|
||||
"NgiG5wSTamZ44ROdJreBn36QBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt6zOg9KE5\n"
|
||||
"RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8AAAAA\n"
|
||||
"//////////+85vqtpxeehPO5ysL8YyVRAgEBA0IABIr1UkgYs5jmbFc7it1/YI2X\n"
|
||||
"T//IlaEjMNZft1owjqpBYH2ErJHk4U5Pp4WvWq1xmHwIZlsH7Ig4KmefCfR6SmU=\n"
|
||||
"-----END PUBLIC KEY-----"
|
||||
)
|
||||
pk = VerifyingKey.from_pem(pub_key_str)
|
||||
|
||||
pk_exp = VerifyingKey.from_string(
|
||||
b"\x04\x8a\xf5\x52\x48\x18\xb3\x98\xe6\x6c\x57\x3b\x8a\xdd\x7f"
|
||||
b"\x60\x8d\x97\x4f\xff\xc8\x95\xa1\x23\x30\xd6\x5f\xb7\x5a\x30"
|
||||
b"\x8e\xaa\x41\x60\x7d\x84\xac\x91\xe4\xe1\x4e\x4f\xa7\x85\xaf"
|
||||
b"\x5a\xad\x71\x98\x7c\x08\x66\x5b\x07\xec\x88\x38\x2a\x67\x9f"
|
||||
b"\x09\xf4\x7a\x4a\x65",
|
||||
curve=NIST256p,
|
||||
)
|
||||
self.assertEqual(pk, pk_exp)
|
||||
|
||||
def test_load_key_with_explicit_with_explicit_disabled(self):
|
||||
pub_key_str = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MIIBSzCCAQMGByqGSM49AgEwgfcCAQEwLAYHKoZIzj0BAQIhAP////8AAAABAAAA\n"
|
||||
"AAAAAAAAAAAA////////////////MFsEIP////8AAAABAAAAAAAAAAAAAAAA////\n"
|
||||
"///////////8BCBaxjXYqjqT57PrvVV2mIa8ZR0GsMxTsPY7zjw+J9JgSwMVAMSd\n"
|
||||
"NgiG5wSTamZ44ROdJreBn36QBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt6zOg9KE5\n"
|
||||
"RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8AAAAA\n"
|
||||
"//////////+85vqtpxeehPO5ysL8YyVRAgEBA0IABIr1UkgYs5jmbFc7it1/YI2X\n"
|
||||
"T//IlaEjMNZft1owjqpBYH2ErJHk4U5Pp4WvWq1xmHwIZlsH7Ig4KmefCfR6SmU=\n"
|
||||
"-----END PUBLIC KEY-----"
|
||||
)
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
VerifyingKey.from_pem(
|
||||
pub_key_str, valid_curve_encodings=["named_curve"]
|
||||
)
|
||||
|
||||
def test_load_key_with_disabled_format(self):
|
||||
with self.assertRaises(MalformedPointError) as e:
|
||||
VerifyingKey.from_der(self.key_bytes, valid_encodings=["raw"])
|
||||
|
||||
self.assertIn("enabled (raw) encodings", str(e.exception))
|
||||
|
||||
def test_custom_hashfunc(self):
|
||||
vk = VerifyingKey.from_der(self.key_bytes, hashlib.sha256)
|
||||
|
||||
self.assertIs(vk.default_hashfunc, hashlib.sha256)
|
||||
|
||||
def test_from_pem_with_custom_hashfunc(self):
|
||||
vk = VerifyingKey.from_pem(self.key_pem, hashlib.sha256)
|
||||
|
||||
self.assertIs(vk.default_hashfunc, hashlib.sha256)
|
||||
|
||||
def test_bytes(self):
|
||||
vk = VerifyingKey.from_der(self.key_bytes)
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytes_memoryview(self):
|
||||
vk = VerifyingKey.from_der(buffer(self.key_bytes))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytearray(self):
|
||||
vk = VerifyingKey.from_der(bytearray(self.key_bytes))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_bytesarray_memoryview(self):
|
||||
vk = VerifyingKey.from_der(buffer(bytearray(self.key_bytes)))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_array_array_of_bytes(self):
|
||||
arr = array.array("B", self.key_bytes)
|
||||
vk = VerifyingKey.from_der(arr)
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_array_array_of_bytes_memoryview(self):
|
||||
arr = array.array("B", self.key_bytes)
|
||||
vk = VerifyingKey.from_der(buffer(arr))
|
||||
|
||||
self.assertEqual(self.vk.to_string(), vk.to_string())
|
||||
|
||||
def test_equality_on_verifying_keys(self):
|
||||
self.assertEqual(self.vk, self.sk.get_verifying_key())
|
||||
|
||||
def test_inequality_on_verifying_keys(self):
|
||||
self.assertNotEqual(self.vk, self.vk2)
|
||||
|
||||
def test_inequality_on_verifying_keys_not_implemented(self):
|
||||
self.assertNotEqual(self.vk, None)
|
||||
|
||||
def test_VerifyingKey_inequality_on_same_curve(self):
|
||||
self.assertNotEqual(self.vk, self.sk2.verifying_key)
|
||||
|
||||
def test_SigningKey_inequality_on_same_curve(self):
|
||||
self.assertNotEqual(self.sk, self.sk2)
|
||||
|
||||
def test_inequality_on_wrong_types(self):
|
||||
self.assertNotEqual(self.vk, self.sk)
|
||||
|
||||
def test_from_public_point_old(self):
|
||||
pj = self.vk.pubkey.point
|
||||
point = Point(pj.curve(), pj.x(), pj.y())
|
||||
|
||||
vk = VerifyingKey.from_public_point(point, self.vk.curve)
|
||||
|
||||
self.assertEqual(vk, self.vk)
|
||||
|
||||
def test_ed25519_VerifyingKey_repr__(self):
|
||||
sk = SigningKey.from_string(Ed25519.generator.to_bytes(), Ed25519)
|
||||
string = repr(sk.verifying_key)
|
||||
|
||||
self.assertEqual(
|
||||
"VerifyingKey.from_string("
|
||||
"bytearray(b'K\\x0c\\xfbZH\\x8e\\x8c\\x8c\\x07\\xee\\xda\\xfb"
|
||||
"\\xe1\\x97\\xcd\\x90\\x18\\x02\\x15h]\\xfe\\xbe\\xcbB\\xba\\xe6r"
|
||||
"\\x10\\xae\\xf1P'), Ed25519, None)",
|
||||
string,
|
||||
)
|
||||
|
||||
def test_edwards_from_public_point(self):
|
||||
point = Ed25519.generator
|
||||
with self.assertRaises(ValueError) as e:
|
||||
VerifyingKey.from_public_point(point, Ed25519)
|
||||
|
||||
self.assertIn("incompatible with Edwards", str(e.exception))
|
||||
|
||||
def test_edwards_precompute_no_side_effect(self):
|
||||
sk = SigningKey.from_string(Ed25519.generator.to_bytes(), Ed25519)
|
||||
vk = sk.verifying_key
|
||||
vk2 = VerifyingKey.from_string(vk.to_string(), Ed25519)
|
||||
vk.precompute()
|
||||
|
||||
self.assertEqual(vk, vk2)
|
||||
|
||||
def test_parse_malfomed_eddsa_der_pubkey(self):
|
||||
der_str = encode_sequence(
|
||||
encode_sequence(encode_oid(*Ed25519.oid)),
|
||||
encode_bitstring(bytes(Ed25519.generator.to_bytes()), 0),
|
||||
encode_bitstring(b"\x00", 0),
|
||||
)
|
||||
|
||||
with self.assertRaises(UnexpectedDER) as e:
|
||||
VerifyingKey.from_der(der_str)
|
||||
|
||||
self.assertIn("trailing junk after public key", str(e.exception))
|
||||
|
||||
def test_edwards_from_public_key_recovery(self):
|
||||
with self.assertRaises(ValueError) as e:
|
||||
VerifyingKey.from_public_key_recovery(b"", b"", Ed25519)
|
||||
|
||||
self.assertIn("unsupported for Edwards", str(e.exception))
|
||||
|
||||
def test_edwards_from_public_key_recovery_with_digest(self):
|
||||
with self.assertRaises(ValueError) as e:
|
||||
VerifyingKey.from_public_key_recovery_with_digest(
|
||||
b"", b"", Ed25519
|
||||
)
|
||||
|
||||
self.assertIn("unsupported for Edwards", str(e.exception))
|
||||
|
||||
def test_load_ed25519_from_pem(self):
|
||||
vk_pem = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MCowBQYDK2VwAyEAIwBQ0NZkIiiO41WJfm5BV42u3kQm7lYnvIXmCy8qy2U=\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
|
||||
vk = VerifyingKey.from_pem(vk_pem)
|
||||
|
||||
self.assertIsInstance(vk.curve, Curve)
|
||||
self.assertIs(vk.curve, Ed25519)
|
||||
|
||||
vk_str = (
|
||||
b"\x23\x00\x50\xd0\xd6\x64\x22\x28\x8e\xe3\x55\x89\x7e\x6e\x41\x57"
|
||||
b"\x8d\xae\xde\x44\x26\xee\x56\x27\xbc\x85\xe6\x0b\x2f\x2a\xcb\x65"
|
||||
)
|
||||
|
||||
vk_2 = VerifyingKey.from_string(vk_str, Ed25519)
|
||||
|
||||
self.assertEqual(vk, vk_2)
|
||||
|
||||
def test_export_ed255_to_pem(self):
|
||||
vk_str = (
|
||||
b"\x23\x00\x50\xd0\xd6\x64\x22\x28\x8e\xe3\x55\x89\x7e\x6e\x41\x57"
|
||||
b"\x8d\xae\xde\x44\x26\xee\x56\x27\xbc\x85\xe6\x0b\x2f\x2a\xcb\x65"
|
||||
)
|
||||
|
||||
vk = VerifyingKey.from_string(vk_str, Ed25519)
|
||||
|
||||
vk_pem = (
|
||||
b"-----BEGIN PUBLIC KEY-----\n"
|
||||
b"MCowBQYDK2VwAyEAIwBQ0NZkIiiO41WJfm5BV42u3kQm7lYnvIXmCy8qy2U=\n"
|
||||
b"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
|
||||
self.assertEqual(vk_pem, vk.to_pem())
|
||||
|
||||
def test_ed25519_export_import(self):
|
||||
sk = SigningKey.generate(Ed25519)
|
||||
vk = sk.verifying_key
|
||||
|
||||
vk2 = VerifyingKey.from_pem(vk.to_pem())
|
||||
|
||||
self.assertEqual(vk, vk2)
|
||||
|
||||
def test_ed25519_sig_verify(self):
|
||||
vk_pem = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MCowBQYDK2VwAyEAIwBQ0NZkIiiO41WJfm5BV42u3kQm7lYnvIXmCy8qy2U=\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
|
||||
vk = VerifyingKey.from_pem(vk_pem)
|
||||
|
||||
data = b"data\n"
|
||||
|
||||
# signature created by OpenSSL 3.0.0 beta1
|
||||
sig = (
|
||||
b"\x64\x47\xab\x6a\x33\xcd\x79\x45\xad\x98\x11\x6c\xb9\xf2\x20\xeb"
|
||||
b"\x90\xd6\x50\xe3\xc7\x8f\x9f\x60\x10\xec\x75\xe0\x2f\x27\xd3\x96"
|
||||
b"\xda\xe8\x58\x7f\xe0\xfe\x46\x5c\x81\xef\x50\xec\x29\x9f\xae\xd5"
|
||||
b"\xad\x46\x3c\x91\x68\x83\x4d\xea\x8d\xa8\x19\x04\x04\x79\x03\x0b"
|
||||
)
|
||||
|
||||
self.assertTrue(vk.verify(sig, data))
|
||||
|
||||
def test_ed448_from_pem(self):
|
||||
pem_str = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MEMwBQYDK2VxAzoAeQtetSu7CMEzE+XWB10Bg47LCA0giNikOxHzdp+tZ/eK/En0\n"
|
||||
"dTdYD2ll94g58MhSnBiBQB9A1MMA\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
|
||||
vk = VerifyingKey.from_pem(pem_str)
|
||||
|
||||
self.assertIsInstance(vk.curve, Curve)
|
||||
self.assertIs(vk.curve, Ed448)
|
||||
|
||||
vk_str = (
|
||||
b"\x79\x0b\x5e\xb5\x2b\xbb\x08\xc1\x33\x13\xe5\xd6\x07\x5d\x01\x83"
|
||||
b"\x8e\xcb\x08\x0d\x20\x88\xd8\xa4\x3b\x11\xf3\x76\x9f\xad\x67\xf7"
|
||||
b"\x8a\xfc\x49\xf4\x75\x37\x58\x0f\x69\x65\xf7\x88\x39\xf0\xc8\x52"
|
||||
b"\x9c\x18\x81\x40\x1f\x40\xd4\xc3\x00"
|
||||
)
|
||||
|
||||
vk2 = VerifyingKey.from_string(vk_str, Ed448)
|
||||
|
||||
self.assertEqual(vk, vk2)
|
||||
|
||||
def test_ed448_to_pem(self):
|
||||
vk_str = (
|
||||
b"\x79\x0b\x5e\xb5\x2b\xbb\x08\xc1\x33\x13\xe5\xd6\x07\x5d\x01\x83"
|
||||
b"\x8e\xcb\x08\x0d\x20\x88\xd8\xa4\x3b\x11\xf3\x76\x9f\xad\x67\xf7"
|
||||
b"\x8a\xfc\x49\xf4\x75\x37\x58\x0f\x69\x65\xf7\x88\x39\xf0\xc8\x52"
|
||||
b"\x9c\x18\x81\x40\x1f\x40\xd4\xc3\x00"
|
||||
)
|
||||
vk = VerifyingKey.from_string(vk_str, Ed448)
|
||||
|
||||
vk_pem = (
|
||||
b"-----BEGIN PUBLIC KEY-----\n"
|
||||
b"MEMwBQYDK2VxAzoAeQtetSu7CMEzE+XWB10Bg47LCA0giNikOxHzdp+tZ/eK/En0\n"
|
||||
b"dTdYD2ll94g58MhSnBiBQB9A1MMA\n"
|
||||
b"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
|
||||
self.assertEqual(vk_pem, vk.to_pem())
|
||||
|
||||
def test_ed448_export_import(self):
|
||||
sk = SigningKey.generate(Ed448)
|
||||
vk = sk.verifying_key
|
||||
|
||||
vk2 = VerifyingKey.from_pem(vk.to_pem())
|
||||
|
||||
self.assertEqual(vk, vk2)
|
||||
|
||||
def test_ed448_sig_verify(self):
|
||||
pem_str = (
|
||||
"-----BEGIN PUBLIC KEY-----\n"
|
||||
"MEMwBQYDK2VxAzoAeQtetSu7CMEzE+XWB10Bg47LCA0giNikOxHzdp+tZ/eK/En0\n"
|
||||
"dTdYD2ll94g58MhSnBiBQB9A1MMA\n"
|
||||
"-----END PUBLIC KEY-----\n"
|
||||
)
|
||||
|
||||
vk = VerifyingKey.from_pem(pem_str)
|
||||
|
||||
data = b"data\n"
|
||||
|
||||
# signature created by OpenSSL 3.0.0 beta1
|
||||
sig = (
|
||||
b"\x68\xed\x2c\x70\x35\x22\xca\x1c\x35\x03\xf3\xaa\x51\x33\x3d\x00"
|
||||
b"\xc0\xae\xb0\x54\xc5\xdc\x7f\x6f\x30\x57\xb4\x1d\xcb\xe9\xec\xfa"
|
||||
b"\xc8\x45\x3e\x51\xc1\xcb\x60\x02\x6a\xd0\x43\x11\x0b\x5f\x9b\xfa"
|
||||
b"\x32\x88\xb2\x38\x6b\xed\xac\x09\x00\x78\xb1\x7b\x5d\x7e\xf8\x16"
|
||||
b"\x31\xdd\x1b\x3f\x98\xa0\xce\x19\xe7\xd8\x1c\x9f\x30\xac\x2f\xd4"
|
||||
b"\x1e\x55\xbf\x21\x98\xf6\x4c\x8c\xbe\x81\xa5\x2d\x80\x4c\x62\x53"
|
||||
b"\x91\xd5\xee\x03\x30\xc6\x17\x66\x4b\x9e\x0c\x8d\x40\xd0\xad\xae"
|
||||
b"\x0a\x00"
|
||||
)
|
||||
|
||||
self.assertTrue(vk.verify(sig, data))
|
||||
|
||||
|
||||
class TestSigningKey(unittest.TestCase):
|
||||
"""
|
||||
Verify that ecdsa.keys.SigningKey.from_der() can be used with
|
||||
bytes-like objects.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
prv_key_str = (
|
||||
"-----BEGIN EC PRIVATE KEY-----\n"
|
||||
"MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n"
|
||||
"BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n"
|
||||
"bA==\n"
|
||||
"-----END EC PRIVATE KEY-----\n"
|
||||
)
|
||||
cls.sk1 = SigningKey.from_pem(prv_key_str)
|
||||
|
||||
prv_key_str = (
|
||||
"-----BEGIN PRIVATE KEY-----\n"
|
||||
"MG8CAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQEEVTBTAgEBBBheyEIL1u+SUqlC6YkE\n"
|
||||
"PKKfVh+lJXcOscWhNAMyAAS4gXfQhO8X9eRWOUCAKDYPn1m0pNcmTmLaBlHc5Ho1\n"
|
||||
"pMW0XPUVk0I6i1V7nCCZ82w=\n"
|
||||
"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
cls.sk1_pkcs8 = SigningKey.from_pem(prv_key_str)
|
||||
|
||||
prv_key_str = (
|
||||
"-----BEGIN EC PRIVATE KEY-----\n"
|
||||
"MHcCAQEEIKlL2EAm5NPPZuXwxRf4nXMk0A80y6UUbiQ17be/qFhRoAoGCCqGSM49\n"
|
||||
"AwEHoUQDQgAE4H3iRbG4TSrsSRb/gusPQB/4YcN8Poqzgjau4kfxBPyZimeRfuY/\n"
|
||||
"9g/wMmPuhGl4BUve51DsnKJFRr8psk0ieA==\n"
|
||||
"-----END EC PRIVATE KEY-----\n"
|
||||
)
|
||||
cls.sk2 = SigningKey.from_pem(prv_key_str)
|
||||
|
||||
def test_decoding_explicit_curve_parameters(self):
|
||||
prv_key_str = (
|
||||
"-----BEGIN PRIVATE KEY-----\n"
|
||||
"MIIBeQIBADCCAQMGByqGSM49AgEwgfcCAQEwLAYHKoZIzj0BAQIhAP////8AAAAB\n"
|
||||
"AAAAAAAAAAAAAAAA////////////////MFsEIP////8AAAABAAAAAAAAAAAAAAAA\n"
|
||||
"///////////////8BCBaxjXYqjqT57PrvVV2mIa8ZR0GsMxTsPY7zjw+J9JgSwMV\n"
|
||||
"AMSdNgiG5wSTamZ44ROdJreBn36QBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt6zOg\n"
|
||||
"9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8A\n"
|
||||
"AAAA//////////+85vqtpxeehPO5ysL8YyVRAgEBBG0wawIBAQQgIXtREfUmR16r\n"
|
||||
"ZbmvDGD2lAEFPZa2DLPyz0czSja58yChRANCAASK9VJIGLOY5mxXO4rdf2CNl0//\n"
|
||||
"yJWhIzDWX7daMI6qQWB9hKyR5OFOT6eFr1qtcZh8CGZbB+yIOCpnnwn0ekpl\n"
|
||||
"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
|
||||
sk = SigningKey.from_pem(prv_key_str)
|
||||
|
||||
sk2 = SigningKey.from_string(
|
||||
b"\x21\x7b\x51\x11\xf5\x26\x47\x5e\xab\x65\xb9\xaf\x0c\x60\xf6"
|
||||
b"\x94\x01\x05\x3d\x96\xb6\x0c\xb3\xf2\xcf\x47\x33\x4a\x36\xb9"
|
||||
b"\xf3\x20",
|
||||
curve=NIST256p,
|
||||
)
|
||||
|
||||
self.assertEqual(sk, sk2)
|
||||
|
||||
def test_decoding_explicit_curve_parameters_with_explicit_disabled(self):
|
||||
prv_key_str = (
|
||||
"-----BEGIN PRIVATE KEY-----\n"
|
||||
"MIIBeQIBADCCAQMGByqGSM49AgEwgfcCAQEwLAYHKoZIzj0BAQIhAP////8AAAAB\n"
|
||||
"AAAAAAAAAAAAAAAA////////////////MFsEIP////8AAAABAAAAAAAAAAAAAAAA\n"
|
||||
"///////////////8BCBaxjXYqjqT57PrvVV2mIa8ZR0GsMxTsPY7zjw+J9JgSwMV\n"
|
||||
"AMSdNgiG5wSTamZ44ROdJreBn36QBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt6zOg\n"
|
||||
"9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8A\n"
|
||||
"AAAA//////////+85vqtpxeehPO5ysL8YyVRAgEBBG0wawIBAQQgIXtREfUmR16r\n"
|
||||
"ZbmvDGD2lAEFPZa2DLPyz0czSja58yChRANCAASK9VJIGLOY5mxXO4rdf2CNl0//\n"
|
||||
"yJWhIzDWX7daMI6qQWB9hKyR5OFOT6eFr1qtcZh8CGZbB+yIOCpnnwn0ekpl\n"
|
||||
"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
|
||||
with self.assertRaises(UnexpectedDER):
|
||||
SigningKey.from_pem(
|
||||
prv_key_str, valid_curve_encodings=["named_curve"]
|
||||
)
|
||||
|
||||
def test_equality_on_signing_keys(self):
|
||||
sk = SigningKey.from_secret_exponent(
|
||||
self.sk1.privkey.secret_multiplier, self.sk1.curve
|
||||
)
|
||||
self.assertEqual(self.sk1, sk)
|
||||
self.assertEqual(self.sk1_pkcs8, sk)
|
||||
|
||||
def test_verify_with_empty_message(self):
|
||||
sig = self.sk1.sign(b"")
|
||||
|
||||
self.assertTrue(sig)
|
||||
|
||||
vk = self.sk1.verifying_key
|
||||
|
||||
self.assertTrue(vk.verify(sig, b""))
|
||||
|
||||
def test_verify_with_precompute(self):
|
||||
sig = self.sk1.sign(b"message")
|
||||
|
||||
vk = self.sk1.verifying_key
|
||||
|
||||
vk.precompute()
|
||||
|
||||
self.assertTrue(vk.verify(sig, b"message"))
|
||||
|
||||
def test_compare_verifying_key_with_precompute(self):
|
||||
vk1 = self.sk1.verifying_key
|
||||
vk1.precompute()
|
||||
|
||||
vk2 = self.sk1_pkcs8.verifying_key
|
||||
|
||||
self.assertEqual(vk1, vk2)
|
||||
|
||||
def test_verify_with_lazy_precompute(self):
|
||||
sig = self.sk2.sign(b"other message")
|
||||
|
||||
vk = self.sk2.verifying_key
|
||||
|
||||
vk.precompute(lazy=True)
|
||||
|
||||
self.assertTrue(vk.verify(sig, b"other message"))
|
||||
|
||||
def test_inequality_on_signing_keys(self):
|
||||
self.assertNotEqual(self.sk1, self.sk2)
|
||||
|
||||
def test_inequality_on_signing_keys_not_implemented(self):
|
||||
self.assertNotEqual(self.sk1, None)
|
||||
|
||||
def test_ed25519_from_pem(self):
|
||||
pem_str = (
|
||||
"-----BEGIN PRIVATE KEY-----\n"
|
||||
"MC4CAQAwBQYDK2VwBCIEIDS6x9FO1PG8T4xIPg8Zd0z8uL6sVGZFEZrX17gHC/XU\n"
|
||||
"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
|
||||
sk = SigningKey.from_pem(pem_str)
|
||||
|
||||
sk_str = SigningKey.from_string(
|
||||
b"\x34\xBA\xC7\xD1\x4E\xD4\xF1\xBC\x4F\x8C\x48\x3E\x0F\x19\x77\x4C"
|
||||
b"\xFC\xB8\xBE\xAC\x54\x66\x45\x11\x9A\xD7\xD7\xB8\x07\x0B\xF5\xD4",
|
||||
Ed25519,
|
||||
)
|
||||
|
||||
self.assertEqual(sk, sk_str)
|
||||
|
||||
def test_ed25519_to_pem(self):
|
||||
sk = SigningKey.from_string(
|
||||
b"\x34\xBA\xC7\xD1\x4E\xD4\xF1\xBC\x4F\x8C\x48\x3E\x0F\x19\x77\x4C"
|
||||
b"\xFC\xB8\xBE\xAC\x54\x66\x45\x11\x9A\xD7\xD7\xB8\x07\x0B\xF5\xD4",
|
||||
Ed25519,
|
||||
)
|
||||
|
||||
pem_str = (
|
||||
b"-----BEGIN PRIVATE KEY-----\n"
|
||||
b"MC4CAQAwBQYDK2VwBCIEIDS6x9FO1PG8T4xIPg8Zd0z8uL6sVGZFEZrX17gHC/XU\n"
|
||||
b"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
|
||||
self.assertEqual(sk.to_pem(format="pkcs8"), pem_str)
|
||||
|
||||
def test_ed25519_to_and_from_pem(self):
|
||||
sk = SigningKey.generate(Ed25519)
|
||||
|
||||
decoded = SigningKey.from_pem(sk.to_pem(format="pkcs8"))
|
||||
|
||||
self.assertEqual(sk, decoded)
|
||||
|
||||
def test_ed448_from_pem(self):
|
||||
pem_str = (
|
||||
"-----BEGIN PRIVATE KEY-----\n"
|
||||
"MEcCAQAwBQYDK2VxBDsEOTyFuXqFLXgJlV8uDqcOw9nG4IqzLiZ/i5NfBDoHPzmP\n"
|
||||
"OP0JMYaLGlTzwovmvCDJ2zLaezu9NLz9aQ==\n"
|
||||
"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
sk = SigningKey.from_pem(pem_str)
|
||||
|
||||
sk_str = SigningKey.from_string(
|
||||
b"\x3C\x85\xB9\x7A\x85\x2D\x78\x09\x95\x5F\x2E\x0E\xA7\x0E\xC3\xD9"
|
||||
b"\xC6\xE0\x8A\xB3\x2E\x26\x7F\x8B\x93\x5F\x04\x3A\x07\x3F\x39\x8F"
|
||||
b"\x38\xFD\x09\x31\x86\x8B\x1A\x54\xF3\xC2\x8B\xE6\xBC\x20\xC9\xDB"
|
||||
b"\x32\xDA\x7B\x3B\xBD\x34\xBC\xFD\x69",
|
||||
Ed448,
|
||||
)
|
||||
|
||||
self.assertEqual(sk, sk_str)
|
||||
|
||||
def test_ed448_to_pem(self):
|
||||
sk = SigningKey.from_string(
|
||||
b"\x3C\x85\xB9\x7A\x85\x2D\x78\x09\x95\x5F\x2E\x0E\xA7\x0E\xC3\xD9"
|
||||
b"\xC6\xE0\x8A\xB3\x2E\x26\x7F\x8B\x93\x5F\x04\x3A\x07\x3F\x39\x8F"
|
||||
b"\x38\xFD\x09\x31\x86\x8B\x1A\x54\xF3\xC2\x8B\xE6\xBC\x20\xC9\xDB"
|
||||
b"\x32\xDA\x7B\x3B\xBD\x34\xBC\xFD\x69",
|
||||
Ed448,
|
||||
)
|
||||
pem_str = (
|
||||
b"-----BEGIN PRIVATE KEY-----\n"
|
||||
b"MEcCAQAwBQYDK2VxBDsEOTyFuXqFLXgJlV8uDqcOw9nG4IqzLiZ/i5NfBDoHPzmP\n"
|
||||
b"OP0JMYaLGlTzwovmvCDJ2zLaezu9NLz9aQ==\n"
|
||||
b"-----END PRIVATE KEY-----\n"
|
||||
)
|
||||
|
||||
self.assertEqual(sk.to_pem(format="pkcs8"), pem_str)
|
||||
|
||||
def test_ed448_encode_decode(self):
|
||||
sk = SigningKey.generate(Ed448)
|
||||
|
||||
decoded = SigningKey.from_pem(sk.to_pem(format="pkcs8"))
|
||||
|
||||
self.assertEqual(decoded, sk)
|
||||
|
||||
|
||||
class TestTrivialCurve(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
# To test what happens with r or s in signing happens to be zero we
|
||||
# need to find a scalar that creates one of the points on a curve that
|
||||
# has x coordinate equal to zero.
|
||||
# Even for secp112r2 curve that's non trivial so use this toy
|
||||
# curve, for which we can iterate over all points quickly
|
||||
curve = CurveFp(163, 84, 58)
|
||||
gen = PointJacobi(curve, 2, 87, 1, 167, generator=True)
|
||||
|
||||
cls.toy_curve = Curve("toy_p8", curve, gen, (1, 2, 0))
|
||||
|
||||
cls.sk = SigningKey.from_secret_exponent(
|
||||
140,
|
||||
cls.toy_curve,
|
||||
hashfunc=hashlib.sha1,
|
||||
)
|
||||
|
||||
def test_generator_sanity(self):
|
||||
gen = self.toy_curve.generator
|
||||
|
||||
self.assertEqual(gen * gen.order(), INFINITY)
|
||||
|
||||
def test_public_key_sanity(self):
|
||||
self.assertEqual(self.sk.verifying_key.to_string(), b"\x98\x1e")
|
||||
|
||||
def test_deterministic_sign(self):
|
||||
sig = self.sk.sign_deterministic(b"message")
|
||||
|
||||
self.assertEqual(sig, b"-.")
|
||||
|
||||
self.assertTrue(self.sk.verifying_key.verify(sig, b"message"))
|
||||
|
||||
def test_deterministic_sign_random_message(self):
|
||||
msg = os.urandom(32)
|
||||
sig = self.sk.sign_deterministic(msg)
|
||||
self.assertEqual(len(sig), 2)
|
||||
self.assertTrue(self.sk.verifying_key.verify(sig, msg))
|
||||
|
||||
def test_deterministic_sign_that_rises_R_zero_error(self):
|
||||
# the raised RSZeroError is caught and handled internally by
|
||||
# sign_deterministic methods
|
||||
msg = b"\x00\x4f"
|
||||
sig = self.sk.sign_deterministic(msg)
|
||||
self.assertEqual(sig, b"\x36\x9e")
|
||||
self.assertTrue(self.sk.verifying_key.verify(sig, msg))
|
||||
|
||||
def test_deterministic_sign_that_rises_S_zero_error(self):
|
||||
msg = b"\x01\x6d"
|
||||
sig = self.sk.sign_deterministic(msg)
|
||||
self.assertEqual(sig, b"\x49\x6c")
|
||||
self.assertTrue(self.sk.verifying_key.verify(sig, msg))
|
||||
|
||||
|
||||
# test VerifyingKey.verify()
|
||||
prv_key_str = (
|
||||
"-----BEGIN EC PRIVATE KEY-----\n"
|
||||
"MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n"
|
||||
"BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n"
|
||||
"bA==\n"
|
||||
"-----END EC PRIVATE KEY-----\n"
|
||||
)
|
||||
key_bytes = unpem(prv_key_str)
|
||||
assert isinstance(key_bytes, bytes)
|
||||
sk = SigningKey.from_der(key_bytes)
|
||||
vk = sk.verifying_key
|
||||
|
||||
data = (
|
||||
b"some string for signing"
|
||||
b"contents don't really matter"
|
||||
b"but do include also some crazy values: "
|
||||
b"\x00\x01\t\r\n\x00\x00\x00\xff\xf0"
|
||||
)
|
||||
assert len(data) % 4 == 0
|
||||
sha1 = hashlib.sha1()
|
||||
sha1.update(data)
|
||||
data_hash = sha1.digest()
|
||||
assert isinstance(data_hash, bytes)
|
||||
sig_raw = sk.sign(data, sigencode=sigencode_string)
|
||||
assert isinstance(sig_raw, bytes)
|
||||
sig_der = sk.sign(data, sigencode=sigencode_der)
|
||||
assert isinstance(sig_der, bytes)
|
||||
sig_strings = sk.sign(data, sigencode=sigencode_strings)
|
||||
assert isinstance(sig_strings[0], bytes)
|
||||
|
||||
verifiers = []
|
||||
for modifier, fun in [
|
||||
("bytes", lambda x: x),
|
||||
("bytes memoryview", lambda x: buffer(x)),
|
||||
("bytearray", lambda x: bytearray(x)),
|
||||
("bytearray memoryview", lambda x: buffer(bytearray(x))),
|
||||
("array.array of bytes", lambda x: array.array("B", x)),
|
||||
("array.array of bytes memoryview", lambda x: buffer(array.array("B", x))),
|
||||
("array.array of ints", lambda x: array.array("I", x)),
|
||||
("array.array of ints memoryview", lambda x: buffer(array.array("I", x))),
|
||||
]:
|
||||
if "ints" in modifier:
|
||||
conv = lambda x: x
|
||||
else:
|
||||
conv = fun
|
||||
for sig_format, signature, decoder, mod_apply in [
|
||||
("raw", sig_raw, sigdecode_string, lambda x: conv(x)),
|
||||
("der", sig_der, sigdecode_der, lambda x: conv(x)),
|
||||
(
|
||||
"strings",
|
||||
sig_strings,
|
||||
sigdecode_strings,
|
||||
lambda x: tuple(conv(i) for i in x),
|
||||
),
|
||||
]:
|
||||
for method_name, vrf_mthd, vrf_data in [
|
||||
("verify", vk.verify, data),
|
||||
("verify_digest", vk.verify_digest, data_hash),
|
||||
]:
|
||||
verifiers.append(
|
||||
pytest.param(
|
||||
signature,
|
||||
decoder,
|
||||
mod_apply,
|
||||
fun,
|
||||
vrf_mthd,
|
||||
vrf_data,
|
||||
id="{2}-{0}-{1}".format(modifier, sig_format, method_name),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"signature,decoder,mod_apply,fun,vrf_mthd,vrf_data", verifiers
|
||||
)
|
||||
def test_VerifyingKey_verify(
|
||||
signature, decoder, mod_apply, fun, vrf_mthd, vrf_data
|
||||
):
|
||||
sig = mod_apply(signature)
|
||||
|
||||
assert vrf_mthd(sig, fun(vrf_data), sigdecode=decoder)
|
||||
|
||||
|
||||
# test SigningKey.from_string()
|
||||
prv_key_bytes = (
|
||||
b"^\xc8B\x0b\xd6\xef\x92R\xa9B\xe9\x89\x04<\xa2"
|
||||
b"\x9fV\x1f\xa5%w\x0e\xb1\xc5"
|
||||
)
|
||||
assert len(prv_key_bytes) == 24
|
||||
converters = []
|
||||
for modifier, convert in [
|
||||
("bytes", lambda x: x),
|
||||
("bytes memoryview", buffer),
|
||||
("bytearray", bytearray),
|
||||
("bytearray memoryview", lambda x: buffer(bytearray(x))),
|
||||
("array.array of bytes", lambda x: array.array("B", x)),
|
||||
("array.array of bytes memoryview", lambda x: buffer(array.array("B", x))),
|
||||
("array.array of ints", lambda x: array.array("I", x)),
|
||||
("array.array of ints memoryview", lambda x: buffer(array.array("I", x))),
|
||||
]:
|
||||
converters.append(pytest.param(convert, id=modifier))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("convert", converters)
|
||||
def test_SigningKey_from_string(convert):
|
||||
key = convert(prv_key_bytes)
|
||||
sk = SigningKey.from_string(key)
|
||||
|
||||
assert sk.to_string() == prv_key_bytes
|
||||
|
||||
|
||||
# test SigningKey.from_der()
|
||||
prv_key_str = (
|
||||
"-----BEGIN EC PRIVATE KEY-----\n"
|
||||
"MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n"
|
||||
"BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n"
|
||||
"bA==\n"
|
||||
"-----END EC PRIVATE KEY-----\n"
|
||||
)
|
||||
key_bytes = unpem(prv_key_str)
|
||||
assert isinstance(key_bytes, bytes)
|
||||
|
||||
# last two converters are for array.array of ints, those require input
|
||||
# that's multiple of 4, which no curve we support produces
|
||||
@pytest.mark.parametrize("convert", converters[:-2])
|
||||
def test_SigningKey_from_der(convert):
|
||||
key = convert(key_bytes)
|
||||
sk = SigningKey.from_der(key)
|
||||
|
||||
assert sk.to_string() == prv_key_bytes
|
||||
|
||||
|
||||
# test SigningKey.sign_deterministic()
|
||||
extra_entropy = b"\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("convert", converters)
|
||||
def test_SigningKey_sign_deterministic(convert):
|
||||
sig = sk.sign_deterministic(
|
||||
convert(data), extra_entropy=convert(extra_entropy)
|
||||
)
|
||||
|
||||
vk.verify(sig, data)
|
||||
|
||||
|
||||
# test SigningKey.sign_digest_deterministic()
|
||||
@pytest.mark.parametrize("convert", converters)
|
||||
def test_SigningKey_sign_digest_deterministic(convert):
|
||||
sig = sk.sign_digest_deterministic(
|
||||
convert(data_hash), extra_entropy=convert(extra_entropy)
|
||||
)
|
||||
|
||||
vk.verify(sig, data)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("convert", converters)
|
||||
def test_SigningKey_sign(convert):
|
||||
sig = sk.sign(convert(data))
|
||||
|
||||
vk.verify(sig, data)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("convert", converters)
|
||||
def test_SigningKey_sign_digest(convert):
|
||||
sig = sk.sign_digest(convert(data_hash))
|
||||
|
||||
vk.verify(sig, data)
|
||||
|
||||
|
||||
def test_SigningKey_with_unlikely_value():
|
||||
sk = SigningKey.from_secret_exponent(NIST256p.order - 1, curve=NIST256p)
|
||||
vk = sk.verifying_key
|
||||
sig = sk.sign(b"hello")
|
||||
assert vk.verify(sig, b"hello")
|
||||
|
||||
|
||||
def test_SigningKey_with_custom_curve_old_point():
|
||||
generator = generator_brainpoolp160r1
|
||||
generator = Point(
|
||||
generator.curve(),
|
||||
generator.x(),
|
||||
generator.y(),
|
||||
generator.order(),
|
||||
)
|
||||
|
||||
curve = Curve(
|
||||
"BRAINPOOLP160r1",
|
||||
generator.curve(),
|
||||
generator,
|
||||
(1, 3, 36, 3, 3, 2, 8, 1, 1, 1),
|
||||
)
|
||||
|
||||
sk = SigningKey.from_secret_exponent(12, curve)
|
||||
|
||||
sk2 = SigningKey.from_secret_exponent(12, BRAINPOOLP160r1)
|
||||
|
||||
assert sk.privkey == sk2.privkey
|
||||
|
||||
|
||||
def test_VerifyingKey_inequality_with_different_curves():
|
||||
sk1 = SigningKey.from_secret_exponent(2, BRAINPOOLP160r1)
|
||||
sk2 = SigningKey.from_secret_exponent(2, NIST256p)
|
||||
|
||||
assert sk1.verifying_key != sk2.verifying_key
|
||||
|
||||
|
||||
def test_VerifyingKey_inequality_with_different_secret_points():
|
||||
sk1 = SigningKey.from_secret_exponent(2, BRAINPOOLP160r1)
|
||||
sk2 = SigningKey.from_secret_exponent(3, BRAINPOOLP160r1)
|
||||
|
||||
assert sk1.verifying_key != sk2.verifying_key
|
||||
|
||||
|
||||
def test_SigningKey_from_pem_pkcs8v2_EdDSA():
|
||||
pem = """-----BEGIN PRIVATE KEY-----
|
||||
MFMCAQEwBQYDK2VwBCIEICc2F2ag1n1QP0jY+g9qWx5sDkx0s/HdNi3cSRHw+zsI
|
||||
oSMDIQA+HQ2xCif8a/LMWR2m5HaCm5I2pKe/cc8OiRANMHxjKQ==
|
||||
-----END PRIVATE KEY-----"""
|
||||
|
||||
sk = SigningKey.from_pem(pem)
|
||||
assert sk.curve == Ed25519
|
||||
|
|
@ -1,370 +0,0 @@
|
|||
from __future__ import with_statement, division
|
||||
|
||||
import hashlib
|
||||
|
||||
try:
|
||||
from hashlib import algorithms_available
|
||||
except ImportError: # pragma: no cover
|
||||
algorithms_available = [
|
||||
"md5",
|
||||
"sha1",
|
||||
"sha224",
|
||||
"sha256",
|
||||
"sha384",
|
||||
"sha512",
|
||||
]
|
||||
# skip algorithms broken by change to OpenSSL 3.0 and early versions
|
||||
# of hashlib that list algorithms that require the legacy provider to work
|
||||
# https://bugs.python.org/issue38820
|
||||
algorithms_available = [
|
||||
i
|
||||
for i in algorithms_available
|
||||
if i not in ("mdc2", "md2", "md4", "whirlpool", "ripemd160")
|
||||
]
|
||||
from functools import partial
|
||||
import pytest
|
||||
import sys
|
||||
import hypothesis.strategies as st
|
||||
from hypothesis import note, assume, given, settings, example
|
||||
|
||||
from .keys import SigningKey
|
||||
from .keys import BadSignatureError
|
||||
from .util import sigencode_der, sigencode_string
|
||||
from .util import sigdecode_der, sigdecode_string
|
||||
from .curves import curves
|
||||
from .der import (
|
||||
encode_integer,
|
||||
encode_bitstring,
|
||||
encode_octet_string,
|
||||
encode_oid,
|
||||
encode_sequence,
|
||||
encode_constructed,
|
||||
)
|
||||
from .ellipticcurve import CurveEdTw
|
||||
|
||||
|
||||
example_data = b"some data to sign"
|
||||
"""Since the data is hashed for processing, really any string will do."""
|
||||
|
||||
|
||||
hash_and_size = [
|
||||
(name, hashlib.new(name).digest_size) for name in algorithms_available
|
||||
]
|
||||
"""Pairs of hash names and their output sizes.
|
||||
Needed for pairing with curves as we don't support hashes
|
||||
bigger than order sizes of curves."""
|
||||
|
||||
|
||||
keys_and_sigs = []
|
||||
"""Name of the curve+hash combination, VerifyingKey and DER signature."""
|
||||
|
||||
|
||||
# for hypothesis strategy shrinking we want smallest curves and hashes first
|
||||
for curve in sorted(curves, key=lambda x: x.baselen):
|
||||
for hash_alg in [
|
||||
name
|
||||
for name, size in sorted(hash_and_size, key=lambda x: x[1])
|
||||
if 0 < size <= curve.baselen
|
||||
]:
|
||||
sk = SigningKey.generate(
|
||||
curve, hashfunc=partial(hashlib.new, hash_alg)
|
||||
)
|
||||
|
||||
keys_and_sigs.append(
|
||||
(
|
||||
"{0} {1}".format(curve, hash_alg),
|
||||
sk.verifying_key,
|
||||
sk.sign(example_data, sigencode=sigencode_der),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# first make sure that the signatures can be verified
|
||||
@pytest.mark.parametrize(
|
||||
"verifying_key,signature",
|
||||
[pytest.param(vk, sig, id=name) for name, vk, sig in keys_and_sigs],
|
||||
)
|
||||
def test_signatures(verifying_key, signature):
|
||||
assert verifying_key.verify(
|
||||
signature, example_data, sigdecode=sigdecode_der
|
||||
)
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_fuzzed_sig(draw, keys_and_sigs):
|
||||
"""
|
||||
Hypothesis strategy that generates pairs of VerifyingKey and malformed
|
||||
signatures created by fuzzing of a valid signature.
|
||||
"""
|
||||
name, verifying_key, old_sig = draw(st.sampled_from(keys_and_sigs))
|
||||
note("Configuration: {0}".format(name))
|
||||
|
||||
sig = bytearray(old_sig)
|
||||
|
||||
# decide which bytes should be removed
|
||||
to_remove = draw(
|
||||
st.lists(st.integers(min_value=0, max_value=len(sig) - 1), unique=True)
|
||||
)
|
||||
to_remove.sort()
|
||||
for i in reversed(to_remove):
|
||||
del sig[i]
|
||||
note("Remove bytes: {0}".format(to_remove))
|
||||
|
||||
# decide which bytes of the original signature should be changed
|
||||
if sig: # pragma: no branch
|
||||
xors = draw(
|
||||
st.dictionaries(
|
||||
st.integers(min_value=0, max_value=len(sig) - 1),
|
||||
st.integers(min_value=1, max_value=255),
|
||||
)
|
||||
)
|
||||
for i, val in xors.items():
|
||||
sig[i] ^= val
|
||||
note("xors: {0}".format(xors))
|
||||
|
||||
# decide where new data should be inserted
|
||||
insert_pos = draw(st.integers(min_value=0, max_value=len(sig)))
|
||||
# NIST521p signature is about 140 bytes long, test slightly longer
|
||||
insert_data = draw(st.binary(max_size=256))
|
||||
|
||||
sig = sig[:insert_pos] + insert_data + sig[insert_pos:]
|
||||
note(
|
||||
"Inserted at position {0} bytes: {1!r}".format(insert_pos, insert_data)
|
||||
)
|
||||
|
||||
sig = bytes(sig)
|
||||
# make sure that there was performed at least one mutation on the data
|
||||
assume(to_remove or xors or insert_data)
|
||||
# and that the mutations didn't cancel each-other out
|
||||
assume(sig != old_sig)
|
||||
|
||||
return verifying_key, sig
|
||||
|
||||
|
||||
params = {}
|
||||
# not supported in hypothesis 2.0.0
|
||||
if sys.version_info >= (2, 7): # pragma: no branch
|
||||
from hypothesis import HealthCheck
|
||||
|
||||
# deadline=5s because NIST521p are slow to verify
|
||||
params["deadline"] = 5000
|
||||
params["suppress_health_check"] = [
|
||||
HealthCheck.data_too_large,
|
||||
HealthCheck.filter_too_much,
|
||||
HealthCheck.too_slow,
|
||||
]
|
||||
|
||||
slow_params = dict(params)
|
||||
slow_params["max_examples"] = 10
|
||||
|
||||
|
||||
@settings(**params)
|
||||
@given(st_fuzzed_sig(keys_and_sigs))
|
||||
def test_fuzzed_der_signatures(args):
|
||||
verifying_key, sig = args
|
||||
|
||||
with pytest.raises(BadSignatureError):
|
||||
verifying_key.verify(sig, example_data, sigdecode=sigdecode_der)
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_random_der_ecdsa_sig_value(draw):
|
||||
"""
|
||||
Hypothesis strategy for selecting random values and encoding them
|
||||
to ECDSA-Sig-Value object::
|
||||
|
||||
ECDSA-Sig-Value ::= SEQUENCE {
|
||||
r INTEGER,
|
||||
s INTEGER
|
||||
}
|
||||
"""
|
||||
name, verifying_key, _ = draw(st.sampled_from(keys_and_sigs))
|
||||
note("Configuration: {0}".format(name))
|
||||
order = int(verifying_key.curve.order)
|
||||
|
||||
# the encode_integer doesn't support negative numbers, would be nice
|
||||
# to generate them too, but we have coverage for remove_integer()
|
||||
# verifying that it doesn't accept them, so meh.
|
||||
# Test all numbers around the ones that can show up (around order)
|
||||
# way smaller and slightly bigger
|
||||
r = draw(
|
||||
st.integers(min_value=0, max_value=order << 4)
|
||||
| st.integers(min_value=order >> 2, max_value=order + 1)
|
||||
)
|
||||
s = draw(
|
||||
st.integers(min_value=0, max_value=order << 4)
|
||||
| st.integers(min_value=order >> 2, max_value=order + 1)
|
||||
)
|
||||
|
||||
sig = encode_sequence(encode_integer(r), encode_integer(s))
|
||||
|
||||
return verifying_key, sig
|
||||
|
||||
|
||||
@settings(**slow_params)
|
||||
@given(st_random_der_ecdsa_sig_value())
|
||||
def test_random_der_ecdsa_sig_value(params):
|
||||
"""
|
||||
Check if random values encoded in ECDSA-Sig-Value structure are rejected
|
||||
as signature.
|
||||
"""
|
||||
verifying_key, sig = params
|
||||
|
||||
with pytest.raises(BadSignatureError):
|
||||
verifying_key.verify(sig, example_data, sigdecode=sigdecode_der)
|
||||
|
||||
|
||||
def st_der_integer(*args, **kwargs):
|
||||
"""
|
||||
Hypothesis strategy that returns a random positive integer as DER
|
||||
INTEGER.
|
||||
Parameters are passed to hypothesis.strategy.integer.
|
||||
"""
|
||||
if "min_value" not in kwargs: # pragma: no branch
|
||||
kwargs["min_value"] = 0
|
||||
return st.builds(encode_integer, st.integers(*args, **kwargs))
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_der_bit_string(draw, *args, **kwargs):
|
||||
"""
|
||||
Hypothesis strategy that returns a random DER BIT STRING.
|
||||
Parameters are passed to hypothesis.strategy.binary.
|
||||
"""
|
||||
data = draw(st.binary(*args, **kwargs))
|
||||
if data:
|
||||
unused = draw(st.integers(min_value=0, max_value=7))
|
||||
data = bytearray(data)
|
||||
data[-1] &= -(2**unused)
|
||||
data = bytes(data)
|
||||
else:
|
||||
unused = 0
|
||||
return encode_bitstring(data, unused)
|
||||
|
||||
|
||||
def st_der_octet_string(*args, **kwargs):
|
||||
"""
|
||||
Hypothesis strategy that returns a random DER OCTET STRING object.
|
||||
Parameters are passed to hypothesis.strategy.binary
|
||||
"""
|
||||
return st.builds(encode_octet_string, st.binary(*args, **kwargs))
|
||||
|
||||
|
||||
def st_der_null():
|
||||
"""
|
||||
Hypothesis strategy that returns DER NULL object.
|
||||
"""
|
||||
return st.just(b"\x05\x00")
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_der_oid(draw):
|
||||
"""
|
||||
Hypothesis strategy that returns DER OBJECT IDENTIFIER objects.
|
||||
"""
|
||||
first = draw(st.integers(min_value=0, max_value=2))
|
||||
if first < 2:
|
||||
second = draw(st.integers(min_value=0, max_value=39))
|
||||
else:
|
||||
second = draw(st.integers(min_value=0, max_value=2**512))
|
||||
rest = draw(
|
||||
st.lists(st.integers(min_value=0, max_value=2**512), max_size=50)
|
||||
)
|
||||
return encode_oid(first, second, *rest)
|
||||
|
||||
|
||||
def st_der():
|
||||
"""
|
||||
Hypothesis strategy that returns random DER structures.
|
||||
|
||||
A valid DER structure is any primitive object, an octet encoding
|
||||
of a valid DER structure, sequence of valid DER objects or a constructed
|
||||
encoding of any of the above.
|
||||
"""
|
||||
return st.recursive(
|
||||
st.just(b"")
|
||||
| st_der_integer(max_value=2**4096)
|
||||
| st_der_bit_string(max_size=1024**2)
|
||||
| st_der_octet_string(max_size=1024**2)
|
||||
| st_der_null()
|
||||
| st_der_oid(),
|
||||
lambda children: st.builds(
|
||||
lambda x: encode_octet_string(x), st.one_of(children)
|
||||
)
|
||||
| st.builds(lambda x: encode_bitstring(x, 0), st.one_of(children))
|
||||
| st.builds(
|
||||
lambda x: encode_sequence(*x), st.lists(children, max_size=200)
|
||||
)
|
||||
| st.builds(
|
||||
lambda tag, x: encode_constructed(tag, x),
|
||||
st.integers(min_value=0, max_value=0x3F),
|
||||
st.one_of(children),
|
||||
),
|
||||
max_leaves=40,
|
||||
)
|
||||
|
||||
|
||||
@settings(**params)
|
||||
@given(st.sampled_from(keys_and_sigs), st_der())
|
||||
def test_random_der_as_signature(params, der):
|
||||
"""Check if random DER structures are rejected as signature"""
|
||||
name, verifying_key, _ = params
|
||||
|
||||
with pytest.raises(BadSignatureError):
|
||||
verifying_key.verify(der, example_data, sigdecode=sigdecode_der)
|
||||
|
||||
|
||||
@settings(**params)
|
||||
@given(st.sampled_from(keys_and_sigs), st.binary(max_size=1024**2))
|
||||
@example(
|
||||
keys_and_sigs[0], encode_sequence(encode_integer(0), encode_integer(0))
|
||||
)
|
||||
@example(
|
||||
keys_and_sigs[0],
|
||||
encode_sequence(encode_integer(1), encode_integer(1)) + b"\x00",
|
||||
)
|
||||
@example(keys_and_sigs[0], encode_sequence(*[encode_integer(1)] * 3))
|
||||
def test_random_bytes_as_signature(params, der):
|
||||
"""Check if random bytes are rejected as signature"""
|
||||
name, verifying_key, _ = params
|
||||
|
||||
with pytest.raises(BadSignatureError):
|
||||
verifying_key.verify(der, example_data, sigdecode=sigdecode_der)
|
||||
|
||||
|
||||
keys_and_string_sigs = [
|
||||
(
|
||||
name,
|
||||
verifying_key,
|
||||
sigencode_string(
|
||||
*sigdecode_der(sig, verifying_key.curve.order),
|
||||
order=verifying_key.curve.order
|
||||
),
|
||||
)
|
||||
for name, verifying_key, sig in keys_and_sigs
|
||||
if not isinstance(verifying_key.curve.curve, CurveEdTw)
|
||||
]
|
||||
"""
|
||||
Name of the curve+hash combination, VerifyingKey and signature as a
|
||||
byte string.
|
||||
"""
|
||||
|
||||
|
||||
keys_and_string_sigs += [
|
||||
(
|
||||
name,
|
||||
verifying_key,
|
||||
sig,
|
||||
)
|
||||
for name, verifying_key, sig in keys_and_sigs
|
||||
if isinstance(verifying_key.curve.curve, CurveEdTw)
|
||||
]
|
||||
|
||||
|
||||
@settings(**params)
|
||||
@given(st_fuzzed_sig(keys_and_string_sigs))
|
||||
def test_fuzzed_string_signatures(params):
|
||||
verifying_key, sig = params
|
||||
|
||||
with pytest.raises(BadSignatureError):
|
||||
verifying_key.verify(sig, example_data, sigdecode=sigdecode_string)
|
||||
|
|
@ -1,433 +0,0 @@
|
|||
import operator
|
||||
from functools import reduce
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
import hypothesis.strategies as st
|
||||
import pytest
|
||||
from hypothesis import given, settings, example
|
||||
|
||||
try:
|
||||
from hypothesis import HealthCheck
|
||||
|
||||
HC_PRESENT = True
|
||||
except ImportError: # pragma: no cover
|
||||
HC_PRESENT = False
|
||||
from .numbertheory import (
|
||||
SquareRootError,
|
||||
JacobiError,
|
||||
factorization,
|
||||
gcd,
|
||||
lcm,
|
||||
jacobi,
|
||||
inverse_mod,
|
||||
is_prime,
|
||||
next_prime,
|
||||
smallprimes,
|
||||
square_root_mod_prime,
|
||||
)
|
||||
|
||||
|
||||
BIGPRIMES = (
|
||||
999671,
|
||||
999683,
|
||||
999721,
|
||||
999727,
|
||||
999749,
|
||||
999763,
|
||||
999769,
|
||||
999773,
|
||||
999809,
|
||||
999853,
|
||||
999863,
|
||||
999883,
|
||||
999907,
|
||||
999917,
|
||||
999931,
|
||||
999953,
|
||||
999959,
|
||||
999961,
|
||||
999979,
|
||||
999983,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"prime, next_p", [(p, q) for p, q in zip(BIGPRIMES[:-1], BIGPRIMES[1:])]
|
||||
)
|
||||
def test_next_prime(prime, next_p):
|
||||
assert next_prime(prime) == next_p
|
||||
|
||||
|
||||
@pytest.mark.parametrize("val", [-1, 0, 1])
|
||||
def test_next_prime_with_nums_less_2(val):
|
||||
assert next_prime(val) == 2
|
||||
|
||||
|
||||
@pytest.mark.parametrize("prime", smallprimes)
|
||||
def test_square_root_mod_prime_for_small_primes(prime):
|
||||
squares = set()
|
||||
for num in range(0, 1 + prime // 2):
|
||||
sq = num * num % prime
|
||||
squares.add(sq)
|
||||
root = square_root_mod_prime(sq, prime)
|
||||
# tested for real with TestNumbertheory.test_square_root_mod_prime
|
||||
assert root * root % prime == sq
|
||||
|
||||
for nonsquare in range(0, prime):
|
||||
if nonsquare in squares:
|
||||
continue
|
||||
with pytest.raises(SquareRootError):
|
||||
square_root_mod_prime(nonsquare, prime)
|
||||
|
||||
|
||||
def test_square_root_mod_prime_for_2():
|
||||
a = square_root_mod_prime(1, 2)
|
||||
assert a == 1
|
||||
|
||||
|
||||
def test_square_root_mod_prime_for_small_prime():
|
||||
root = square_root_mod_prime(98**2 % 101, 101)
|
||||
assert root * root % 101 == 9
|
||||
|
||||
|
||||
def test_square_root_mod_prime_for_p_congruent_5():
|
||||
p = 13
|
||||
assert p % 8 == 5
|
||||
|
||||
root = square_root_mod_prime(3, p)
|
||||
assert root * root % p == 3
|
||||
|
||||
|
||||
def test_square_root_mod_prime_for_p_congruent_5_large_d():
|
||||
p = 29
|
||||
assert p % 8 == 5
|
||||
|
||||
root = square_root_mod_prime(4, p)
|
||||
assert root * root % p == 4
|
||||
|
||||
|
||||
class TestSquareRootModPrime(unittest.TestCase):
|
||||
def test_power_of_2_p(self):
|
||||
with self.assertRaises(JacobiError):
|
||||
square_root_mod_prime(12, 32)
|
||||
|
||||
def test_no_square(self):
|
||||
with self.assertRaises(SquareRootError) as e:
|
||||
square_root_mod_prime(12, 31)
|
||||
|
||||
self.assertIn("no square root", str(e.exception))
|
||||
|
||||
def test_non_prime(self):
|
||||
with self.assertRaises(SquareRootError) as e:
|
||||
square_root_mod_prime(12, 33)
|
||||
|
||||
self.assertIn("p is not prime", str(e.exception))
|
||||
|
||||
def test_non_prime_with_negative(self):
|
||||
with self.assertRaises(SquareRootError) as e:
|
||||
square_root_mod_prime(697 - 1, 697)
|
||||
|
||||
self.assertIn("p is not prime", str(e.exception))
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_two_nums_rel_prime(draw):
|
||||
# 521-bit is the biggest curve we operate on, use 1024 for a bit
|
||||
# of breathing space
|
||||
mod = draw(st.integers(min_value=2, max_value=2**1024))
|
||||
num = draw(
|
||||
st.integers(min_value=1, max_value=mod - 1).filter(
|
||||
lambda x: gcd(x, mod) == 1
|
||||
)
|
||||
)
|
||||
return num, mod
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_primes(draw, *args, **kwargs):
|
||||
if "min_value" not in kwargs: # pragma: no branch
|
||||
kwargs["min_value"] = 1
|
||||
prime = draw(
|
||||
st.sampled_from(smallprimes)
|
||||
| st.integers(*args, **kwargs).filter(is_prime)
|
||||
)
|
||||
return prime
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_num_square_prime(draw):
|
||||
prime = draw(st_primes(max_value=2**1024))
|
||||
num = draw(st.integers(min_value=0, max_value=1 + prime // 2))
|
||||
sq = num * num % prime
|
||||
return sq, prime
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_comp_with_com_fac(draw):
|
||||
"""
|
||||
Strategy that returns lists of numbers, all having a common factor.
|
||||
"""
|
||||
primes = draw(
|
||||
st.lists(st_primes(max_value=2**512), min_size=1, max_size=10)
|
||||
)
|
||||
# select random prime(s) that will make the common factor of composites
|
||||
com_fac_primes = draw(
|
||||
st.lists(st.sampled_from(primes), min_size=1, max_size=20)
|
||||
)
|
||||
com_fac = reduce(operator.mul, com_fac_primes, 1)
|
||||
|
||||
# select at most 20 lists (returned numbers),
|
||||
# each having at most 30 primes (factors) including none (then the number
|
||||
# will be 1)
|
||||
comp_primes = draw(
|
||||
st.integers(min_value=1, max_value=20).flatmap(
|
||||
lambda n: st.lists(
|
||||
st.lists(st.sampled_from(primes), max_size=30),
|
||||
min_size=1,
|
||||
max_size=n,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
return [reduce(operator.mul, nums, 1) * com_fac for nums in comp_primes]
|
||||
|
||||
|
||||
@st.composite
|
||||
def st_comp_no_com_fac(draw):
|
||||
"""
|
||||
Strategy that returns lists of numbers that don't have a common factor.
|
||||
"""
|
||||
primes = draw(
|
||||
st.lists(
|
||||
st_primes(max_value=2**512), min_size=2, max_size=10, unique=True
|
||||
)
|
||||
)
|
||||
# first select the primes that will create the uncommon factor
|
||||
# between returned numbers
|
||||
uncom_fac_primes = draw(
|
||||
st.lists(
|
||||
st.sampled_from(primes),
|
||||
min_size=1,
|
||||
max_size=len(primes) - 1,
|
||||
unique=True,
|
||||
)
|
||||
)
|
||||
uncom_fac = reduce(operator.mul, uncom_fac_primes, 1)
|
||||
|
||||
# then build composites from leftover primes
|
||||
leftover_primes = [i for i in primes if i not in uncom_fac_primes]
|
||||
|
||||
assert leftover_primes
|
||||
assert uncom_fac_primes
|
||||
|
||||
# select at most 20 lists, each having at most 30 primes
|
||||
# selected from the leftover_primes list
|
||||
number_primes = draw(
|
||||
st.integers(min_value=1, max_value=20).flatmap(
|
||||
lambda n: st.lists(
|
||||
st.lists(st.sampled_from(leftover_primes), max_size=30),
|
||||
min_size=1,
|
||||
max_size=n,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
numbers = [reduce(operator.mul, nums, 1) for nums in number_primes]
|
||||
|
||||
insert_at = draw(st.integers(min_value=0, max_value=len(numbers)))
|
||||
numbers.insert(insert_at, uncom_fac)
|
||||
return numbers
|
||||
|
||||
|
||||
HYP_SETTINGS = {}
|
||||
if HC_PRESENT: # pragma: no branch
|
||||
HYP_SETTINGS["suppress_health_check"] = [
|
||||
HealthCheck.filter_too_much,
|
||||
HealthCheck.too_slow,
|
||||
]
|
||||
# the factorization() sometimes takes a long time to finish
|
||||
HYP_SETTINGS["deadline"] = 5000
|
||||
|
||||
|
||||
HYP_SLOW_SETTINGS = dict(HYP_SETTINGS)
|
||||
HYP_SLOW_SETTINGS["max_examples"] = 10
|
||||
|
||||
|
||||
class TestIsPrime(unittest.TestCase):
|
||||
def test_very_small_prime(self):
|
||||
assert is_prime(23)
|
||||
|
||||
def test_very_small_composite(self):
|
||||
assert not is_prime(22)
|
||||
|
||||
def test_small_prime(self):
|
||||
assert is_prime(123456791)
|
||||
|
||||
def test_special_composite(self):
|
||||
assert not is_prime(10261)
|
||||
|
||||
def test_medium_prime_1(self):
|
||||
# nextPrime[2^256]
|
||||
assert is_prime(2**256 + 0x129)
|
||||
|
||||
def test_medium_prime_2(self):
|
||||
# nextPrime(2^256+0x129)
|
||||
assert is_prime(2**256 + 0x12D)
|
||||
|
||||
def test_medium_trivial_composite(self):
|
||||
assert not is_prime(2**256 + 0x130)
|
||||
|
||||
def test_medium_non_trivial_composite(self):
|
||||
assert not is_prime(2**256 + 0x12F)
|
||||
|
||||
def test_large_prime(self):
|
||||
# nextPrime[2^2048]
|
||||
assert is_prime(2**2048 + 0x3D5)
|
||||
|
||||
|
||||
class TestNumbertheory(unittest.TestCase):
|
||||
def test_gcd(self):
|
||||
assert gcd(3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13) == 3 * 5
|
||||
assert gcd([3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13]) == 3 * 5
|
||||
assert gcd(3) == 3
|
||||
|
||||
@unittest.skipUnless(
|
||||
HC_PRESENT,
|
||||
"Hypothesis 2.0.0 can't be made tolerant of hard to "
|
||||
"meet requirements (like `is_prime()`), the test "
|
||||
"case times-out on it",
|
||||
)
|
||||
@settings(**HYP_SLOW_SETTINGS)
|
||||
@given(st_comp_with_com_fac())
|
||||
def test_gcd_with_com_factor(self, numbers):
|
||||
n = gcd(numbers)
|
||||
assert 1 in numbers or n != 1
|
||||
for i in numbers:
|
||||
assert i % n == 0
|
||||
|
||||
@unittest.skipUnless(
|
||||
HC_PRESENT,
|
||||
"Hypothesis 2.0.0 can't be made tolerant of hard to "
|
||||
"meet requirements (like `is_prime()`), the test "
|
||||
"case times-out on it",
|
||||
)
|
||||
@settings(**HYP_SLOW_SETTINGS)
|
||||
@given(st_comp_no_com_fac())
|
||||
def test_gcd_with_uncom_factor(self, numbers):
|
||||
n = gcd(numbers)
|
||||
assert n == 1
|
||||
|
||||
@given(
|
||||
st.lists(
|
||||
st.integers(min_value=1, max_value=2**8192),
|
||||
min_size=1,
|
||||
max_size=20,
|
||||
)
|
||||
)
|
||||
def test_gcd_with_random_numbers(self, numbers):
|
||||
n = gcd(numbers)
|
||||
for i in numbers:
|
||||
# check that at least it's a divider
|
||||
assert i % n == 0
|
||||
|
||||
def test_lcm(self):
|
||||
assert lcm(3, 5 * 3, 7 * 3) == 3 * 5 * 7
|
||||
assert lcm([3, 5 * 3, 7 * 3]) == 3 * 5 * 7
|
||||
assert lcm(3) == 3
|
||||
|
||||
@given(
|
||||
st.lists(
|
||||
st.integers(min_value=1, max_value=2**8192),
|
||||
min_size=1,
|
||||
max_size=20,
|
||||
)
|
||||
)
|
||||
def test_lcm_with_random_numbers(self, numbers):
|
||||
n = lcm(numbers)
|
||||
for i in numbers:
|
||||
assert n % i == 0
|
||||
|
||||
@unittest.skipUnless(
|
||||
HC_PRESENT,
|
||||
"Hypothesis 2.0.0 can't be made tolerant of hard to "
|
||||
"meet requirements (like `is_prime()`), the test "
|
||||
"case times-out on it",
|
||||
)
|
||||
@settings(**HYP_SETTINGS)
|
||||
@given(st_num_square_prime())
|
||||
def test_square_root_mod_prime(self, vals):
|
||||
square, prime = vals
|
||||
|
||||
calc = square_root_mod_prime(square, prime)
|
||||
assert calc * calc % prime == square
|
||||
|
||||
@settings(**HYP_SETTINGS)
|
||||
@given(st.integers(min_value=1, max_value=10**12))
|
||||
@example(265399 * 1526929)
|
||||
@example(373297**2 * 553991)
|
||||
def test_factorization(self, num):
|
||||
factors = factorization(num)
|
||||
mult = 1
|
||||
for i in factors:
|
||||
mult *= i[0] ** i[1]
|
||||
assert mult == num
|
||||
|
||||
def test_factorisation_smallprimes(self):
|
||||
exp = 101 * 103
|
||||
assert 101 in smallprimes
|
||||
assert 103 in smallprimes
|
||||
factors = factorization(exp)
|
||||
mult = 1
|
||||
for i in factors:
|
||||
mult *= i[0] ** i[1]
|
||||
assert mult == exp
|
||||
|
||||
def test_factorisation_not_smallprimes(self):
|
||||
exp = 1231 * 1237
|
||||
assert 1231 not in smallprimes
|
||||
assert 1237 not in smallprimes
|
||||
factors = factorization(exp)
|
||||
mult = 1
|
||||
for i in factors:
|
||||
mult *= i[0] ** i[1]
|
||||
assert mult == exp
|
||||
|
||||
def test_jacobi_with_zero(self):
|
||||
assert jacobi(0, 3) == 0
|
||||
|
||||
def test_jacobi_with_one(self):
|
||||
assert jacobi(1, 3) == 1
|
||||
|
||||
@settings(**HYP_SETTINGS)
|
||||
@given(st.integers(min_value=3, max_value=1000).filter(lambda x: x % 2))
|
||||
def test_jacobi(self, mod):
|
||||
if is_prime(mod):
|
||||
squares = set()
|
||||
for root in range(1, mod):
|
||||
assert jacobi(root * root, mod) == 1
|
||||
squares.add(root * root % mod)
|
||||
for i in range(1, mod):
|
||||
if i not in squares:
|
||||
assert jacobi(i, mod) == -1
|
||||
else:
|
||||
factors = factorization(mod)
|
||||
for a in range(1, mod):
|
||||
c = 1
|
||||
for i in factors:
|
||||
c *= jacobi(a, i[0]) ** i[1]
|
||||
assert c == jacobi(a, mod)
|
||||
|
||||
@given(st_two_nums_rel_prime())
|
||||
def test_inverse_mod(self, nums):
|
||||
num, mod = nums
|
||||
|
||||
inv = inverse_mod(num, mod)
|
||||
|
||||
assert 0 < inv < mod
|
||||
assert num * inv % mod == 1
|
||||
|
||||
def test_inverse_mod_with_zero(self):
|
||||
assert 0 == inverse_mod(0, 11)
|
||||
2267
dist/ba_data/python-site-packages/ecdsa/test_pyecdsa.py
vendored
2267
dist/ba_data/python-site-packages/ecdsa/test_pyecdsa.py
vendored
File diff suppressed because it is too large
Load diff
|
|
@ -1,180 +0,0 @@
|
|||
# Copyright Mateusz Kobos, (c) 2011
|
||||
# https://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/
|
||||
# released under the MIT licence
|
||||
|
||||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
import threading
|
||||
import time
|
||||
import copy
|
||||
from ._rwlock import RWLock
|
||||
|
||||
|
||||
class Writer(threading.Thread):
|
||||
def __init__(
|
||||
self, buffer_, rw_lock, init_sleep_time, sleep_time, to_write
|
||||
):
|
||||
"""
|
||||
@param buffer_: common buffer_ shared by the readers and writers
|
||||
@type buffer_: list
|
||||
@type rw_lock: L{RWLock}
|
||||
@param init_sleep_time: sleep time before doing any action
|
||||
@type init_sleep_time: C{float}
|
||||
@param sleep_time: sleep time while in critical section
|
||||
@type sleep_time: C{float}
|
||||
@param to_write: data that will be appended to the buffer
|
||||
"""
|
||||
threading.Thread.__init__(self)
|
||||
self.__buffer = buffer_
|
||||
self.__rw_lock = rw_lock
|
||||
self.__init_sleep_time = init_sleep_time
|
||||
self.__sleep_time = sleep_time
|
||||
self.__to_write = to_write
|
||||
self.entry_time = None
|
||||
"""Time of entry to the critical section"""
|
||||
self.exit_time = None
|
||||
"""Time of exit from the critical section"""
|
||||
|
||||
def run(self):
|
||||
time.sleep(self.__init_sleep_time)
|
||||
self.__rw_lock.writer_acquire()
|
||||
self.entry_time = time.time()
|
||||
time.sleep(self.__sleep_time)
|
||||
self.__buffer.append(self.__to_write)
|
||||
self.exit_time = time.time()
|
||||
self.__rw_lock.writer_release()
|
||||
|
||||
|
||||
class Reader(threading.Thread):
|
||||
def __init__(self, buffer_, rw_lock, init_sleep_time, sleep_time):
|
||||
"""
|
||||
@param buffer_: common buffer shared by the readers and writers
|
||||
@type buffer_: list
|
||||
@type rw_lock: L{RWLock}
|
||||
@param init_sleep_time: sleep time before doing any action
|
||||
@type init_sleep_time: C{float}
|
||||
@param sleep_time: sleep time while in critical section
|
||||
@type sleep_time: C{float}
|
||||
"""
|
||||
threading.Thread.__init__(self)
|
||||
self.__buffer = buffer_
|
||||
self.__rw_lock = rw_lock
|
||||
self.__init_sleep_time = init_sleep_time
|
||||
self.__sleep_time = sleep_time
|
||||
self.buffer_read = None
|
||||
"""a copy of a the buffer read while in critical section"""
|
||||
self.entry_time = None
|
||||
"""Time of entry to the critical section"""
|
||||
self.exit_time = None
|
||||
"""Time of exit from the critical section"""
|
||||
|
||||
def run(self):
|
||||
time.sleep(self.__init_sleep_time)
|
||||
self.__rw_lock.reader_acquire()
|
||||
self.entry_time = time.time()
|
||||
time.sleep(self.__sleep_time)
|
||||
self.buffer_read = copy.deepcopy(self.__buffer)
|
||||
self.exit_time = time.time()
|
||||
self.__rw_lock.reader_release()
|
||||
|
||||
|
||||
class RWLockTestCase(unittest.TestCase):
|
||||
def test_readers_nonexclusive_access(self):
|
||||
(buffer_, rw_lock, threads) = self.__init_variables()
|
||||
|
||||
threads.append(Reader(buffer_, rw_lock, 0, 0))
|
||||
threads.append(Writer(buffer_, rw_lock, 0.2, 0.4, 1))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.3, 0.3))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.5, 0))
|
||||
|
||||
self.__start_and_join_threads(threads)
|
||||
|
||||
## The third reader should enter after the second one but it should
|
||||
## exit before the second one exits
|
||||
## (i.e. the readers should be in the critical section
|
||||
## at the same time)
|
||||
|
||||
self.assertEqual([], threads[0].buffer_read)
|
||||
self.assertEqual([1], threads[2].buffer_read)
|
||||
self.assertEqual([1], threads[3].buffer_read)
|
||||
self.assertTrue(threads[1].exit_time <= threads[2].entry_time)
|
||||
self.assertTrue(threads[2].entry_time <= threads[3].entry_time)
|
||||
self.assertTrue(threads[3].exit_time < threads[2].exit_time)
|
||||
|
||||
def test_writers_exclusive_access(self):
|
||||
(buffer_, rw_lock, threads) = self.__init_variables()
|
||||
|
||||
threads.append(Writer(buffer_, rw_lock, 0, 0.4, 1))
|
||||
threads.append(Writer(buffer_, rw_lock, 0.1, 0, 2))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.2, 0))
|
||||
|
||||
self.__start_and_join_threads(threads)
|
||||
|
||||
## The second writer should wait for the first one to exit
|
||||
|
||||
self.assertEqual([1, 2], threads[2].buffer_read)
|
||||
self.assertTrue(threads[0].exit_time <= threads[1].entry_time)
|
||||
self.assertTrue(threads[1].exit_time <= threads[2].exit_time)
|
||||
|
||||
def test_writer_priority(self):
|
||||
(buffer_, rw_lock, threads) = self.__init_variables()
|
||||
|
||||
threads.append(Writer(buffer_, rw_lock, 0, 0, 1))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.1, 0.4))
|
||||
threads.append(Writer(buffer_, rw_lock, 0.2, 0, 2))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.3, 0))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.3, 0))
|
||||
|
||||
self.__start_and_join_threads(threads)
|
||||
|
||||
## The second writer should go before the second and the third reader
|
||||
|
||||
self.assertEqual([1], threads[1].buffer_read)
|
||||
self.assertEqual([1, 2], threads[3].buffer_read)
|
||||
self.assertEqual([1, 2], threads[4].buffer_read)
|
||||
self.assertTrue(threads[0].exit_time < threads[1].entry_time)
|
||||
self.assertTrue(threads[1].exit_time <= threads[2].entry_time)
|
||||
self.assertTrue(threads[2].exit_time <= threads[3].entry_time)
|
||||
self.assertTrue(threads[2].exit_time <= threads[4].entry_time)
|
||||
|
||||
def test_many_writers_priority(self):
|
||||
(buffer_, rw_lock, threads) = self.__init_variables()
|
||||
|
||||
threads.append(Writer(buffer_, rw_lock, 0, 0, 1))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.1, 0.6))
|
||||
threads.append(Writer(buffer_, rw_lock, 0.2, 0.1, 2))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.3, 0))
|
||||
threads.append(Reader(buffer_, rw_lock, 0.4, 0))
|
||||
threads.append(Writer(buffer_, rw_lock, 0.5, 0.1, 3))
|
||||
|
||||
self.__start_and_join_threads(threads)
|
||||
|
||||
## The two last writers should go first -- after the first reader and
|
||||
## before the second and the third reader
|
||||
|
||||
self.assertEqual([1], threads[1].buffer_read)
|
||||
self.assertEqual([1, 2, 3], threads[3].buffer_read)
|
||||
self.assertEqual([1, 2, 3], threads[4].buffer_read)
|
||||
self.assertTrue(threads[0].exit_time < threads[1].entry_time)
|
||||
self.assertTrue(threads[1].exit_time <= threads[2].entry_time)
|
||||
self.assertTrue(threads[1].exit_time <= threads[5].entry_time)
|
||||
self.assertTrue(threads[2].exit_time <= threads[3].entry_time)
|
||||
self.assertTrue(threads[2].exit_time <= threads[4].entry_time)
|
||||
self.assertTrue(threads[5].exit_time <= threads[3].entry_time)
|
||||
self.assertTrue(threads[5].exit_time <= threads[4].entry_time)
|
||||
|
||||
@staticmethod
|
||||
def __init_variables():
|
||||
buffer_ = []
|
||||
rw_lock = RWLock()
|
||||
threads = []
|
||||
return (buffer_, rw_lock, threads)
|
||||
|
||||
@staticmethod
|
||||
def __start_and_join_threads(threads):
|
||||
for t in threads:
|
||||
t.start()
|
||||
for t in threads:
|
||||
t.join()
|
||||
111
dist/ba_data/python-site-packages/ecdsa/test_sha3.py
vendored
111
dist/ba_data/python-site-packages/ecdsa/test_sha3.py
vendored
|
|
@ -1,111 +0,0 @@
|
|||
try:
|
||||
import unittest2 as unittest
|
||||
except ImportError:
|
||||
import unittest
|
||||
import pytest
|
||||
|
||||
try:
|
||||
from gmpy2 import mpz
|
||||
|
||||
GMPY = True
|
||||
except ImportError:
|
||||
try:
|
||||
from gmpy import mpz
|
||||
|
||||
GMPY = True
|
||||
except ImportError:
|
||||
GMPY = False
|
||||
|
||||
from ._sha3 import shake_256
|
||||
from ._compat import bytes_to_int, int_to_bytes
|
||||
|
||||
B2I_VECTORS = [
|
||||
(b"\x00\x01", "big", 1),
|
||||
(b"\x00\x01", "little", 0x0100),
|
||||
(b"", "big", 0),
|
||||
(b"\x00", "little", 0),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bytes_in,endian,int_out", B2I_VECTORS)
|
||||
def test_bytes_to_int(bytes_in, endian, int_out):
|
||||
out = bytes_to_int(bytes_in, endian)
|
||||
assert out == int_out
|
||||
|
||||
|
||||
class TestBytesToInt(unittest.TestCase):
|
||||
def test_bytes_to_int_wrong_endian(self):
|
||||
with self.assertRaises(ValueError):
|
||||
bytes_to_int(b"\x00", "middle")
|
||||
|
||||
def test_int_to_bytes_wrong_endian(self):
|
||||
with self.assertRaises(ValueError):
|
||||
int_to_bytes(0, byteorder="middle")
|
||||
|
||||
|
||||
@pytest.mark.skipif(GMPY == False, reason="requites gmpy or gmpy2")
|
||||
def test_int_to_bytes_with_gmpy():
|
||||
assert int_to_bytes(mpz(1)) == b"\x01"
|
||||
|
||||
|
||||
I2B_VECTORS = [
|
||||
(0, None, "big", b""),
|
||||
(0, 1, "big", b"\x00"),
|
||||
(1, None, "big", b"\x01"),
|
||||
(0x0100, None, "little", b"\x00\x01"),
|
||||
(0x0100, 4, "little", b"\x00\x01\x00\x00"),
|
||||
(1, 4, "big", b"\x00\x00\x00\x01"),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("int_in,length,endian,bytes_out", I2B_VECTORS)
|
||||
def test_int_to_bytes(int_in, length, endian, bytes_out):
|
||||
out = int_to_bytes(int_in, length, endian)
|
||||
assert out == bytes_out
|
||||
|
||||
|
||||
SHAKE_256_VECTORS = [
|
||||
(
|
||||
b"Message.",
|
||||
32,
|
||||
b"\x78\xa1\x37\xbb\x33\xae\xe2\x72\xb1\x02\x4f\x39\x43\xe5\xcf\x0c"
|
||||
b"\x4e\x9c\x72\x76\x2e\x34\x4c\xf8\xf9\xc3\x25\x9d\x4f\x91\x2c\x3a",
|
||||
),
|
||||
(
|
||||
b"",
|
||||
32,
|
||||
b"\x46\xb9\xdd\x2b\x0b\xa8\x8d\x13\x23\x3b\x3f\xeb\x74\x3e\xeb\x24"
|
||||
b"\x3f\xcd\x52\xea\x62\xb8\x1b\x82\xb5\x0c\x27\x64\x6e\xd5\x76\x2f",
|
||||
),
|
||||
(
|
||||
b"message",
|
||||
32,
|
||||
b"\x86\x16\xe1\xe4\xcf\xd8\xb5\xf7\xd9\x2d\x43\xd8\x6e\x1b\x14\x51"
|
||||
b"\xa2\xa6\x5a\xf8\x64\xfc\xb1\x26\xc2\x66\x0a\xb3\x46\x51\xb1\x75",
|
||||
),
|
||||
(
|
||||
b"message",
|
||||
16,
|
||||
b"\x86\x16\xe1\xe4\xcf\xd8\xb5\xf7\xd9\x2d\x43\xd8\x6e\x1b\x14\x51",
|
||||
),
|
||||
(
|
||||
b"message",
|
||||
64,
|
||||
b"\x86\x16\xe1\xe4\xcf\xd8\xb5\xf7\xd9\x2d\x43\xd8\x6e\x1b\x14\x51"
|
||||
b"\xa2\xa6\x5a\xf8\x64\xfc\xb1\x26\xc2\x66\x0a\xb3\x46\x51\xb1\x75"
|
||||
b"\x30\xd6\xba\x2a\x46\x65\xf1\x9d\xf0\x62\x25\xb1\x26\xd1\x3e\xed"
|
||||
b"\x91\xd5\x0d\xe7\xb9\xcb\x65\xf3\x3a\x46\xae\xd3\x6c\x7d\xc5\xe8",
|
||||
),
|
||||
(
|
||||
b"A" * 1024,
|
||||
32,
|
||||
b"\xa5\xef\x7e\x30\x8b\xe8\x33\x64\xe5\x9c\xf3\xb5\xf3\xba\x20\xa3"
|
||||
b"\x5a\xe7\x30\xfd\xbc\x33\x11\xbf\x83\x89\x50\x82\xb4\x41\xe9\xb3",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("msg,olen,ohash", SHAKE_256_VECTORS)
|
||||
def test_shake_256(msg, olen, ohash):
|
||||
out = shake_256(msg, olen)
|
||||
assert out == bytearray(ohash)
|
||||
433
dist/ba_data/python-site-packages/ecdsa/util.py
vendored
433
dist/ba_data/python-site-packages/ecdsa/util.py
vendored
|
|
@ -1,433 +0,0 @@
|
|||
from __future__ import division
|
||||
|
||||
import os
|
||||
import math
|
||||
import binascii
|
||||
import sys
|
||||
from hashlib import sha256
|
||||
from six import PY2, int2byte, b, next
|
||||
from . import der
|
||||
from ._compat import normalise_bytes
|
||||
|
||||
# RFC5480:
|
||||
# The "unrestricted" algorithm identifier is:
|
||||
# id-ecPublicKey OBJECT IDENTIFIER ::= {
|
||||
# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
|
||||
|
||||
oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
|
||||
encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
|
||||
|
||||
# RFC5480:
|
||||
# The ECDH algorithm uses the following object identifier:
|
||||
# id-ecDH OBJECT IDENTIFIER ::= {
|
||||
# iso(1) identified-organization(3) certicom(132) schemes(1)
|
||||
# ecdh(12) }
|
||||
|
||||
oid_ecDH = (1, 3, 132, 1, 12)
|
||||
|
||||
# RFC5480:
|
||||
# The ECMQV algorithm uses the following object identifier:
|
||||
# id-ecMQV OBJECT IDENTIFIER ::= {
|
||||
# iso(1) identified-organization(3) certicom(132) schemes(1)
|
||||
# ecmqv(13) }
|
||||
|
||||
oid_ecMQV = (1, 3, 132, 1, 13)
|
||||
|
||||
if sys.version_info >= (3,): # pragma: no branch
|
||||
|
||||
def entropy_to_bits(ent_256):
|
||||
"""Convert a bytestring to string of 0's and 1's"""
|
||||
return bin(int.from_bytes(ent_256, "big"))[2:].zfill(len(ent_256) * 8)
|
||||
|
||||
else:
|
||||
|
||||
def entropy_to_bits(ent_256):
|
||||
"""Convert a bytestring to string of 0's and 1's"""
|
||||
return "".join(bin(ord(x))[2:].zfill(8) for x in ent_256)
|
||||
|
||||
|
||||
if sys.version_info < (2, 7): # pragma: no branch
|
||||
# Can't add a method to a built-in type so we are stuck with this
|
||||
def bit_length(x):
|
||||
return len(bin(x)) - 2
|
||||
|
||||
else:
|
||||
|
||||
def bit_length(x):
|
||||
return x.bit_length() or 1
|
||||
|
||||
|
||||
def orderlen(order):
|
||||
return (1 + len("%x" % order)) // 2 # bytes
|
||||
|
||||
|
||||
def randrange(order, entropy=None):
|
||||
"""Return a random integer k such that 1 <= k < order, uniformly
|
||||
distributed across that range. Worst case should be a mean of 2 loops at
|
||||
(2**k)+2.
|
||||
|
||||
Note that this function is not declared to be forwards-compatible: we may
|
||||
change the behavior in future releases. The entropy= argument (which
|
||||
should get a callable that behaves like os.urandom) can be used to
|
||||
achieve stability within a given release (for repeatable unit tests), but
|
||||
should not be used as a long-term-compatible key generation algorithm.
|
||||
"""
|
||||
assert order > 1
|
||||
if entropy is None:
|
||||
entropy = os.urandom
|
||||
upper_2 = bit_length(order - 2)
|
||||
upper_256 = upper_2 // 8 + 1
|
||||
while True: # I don't think this needs a counter with bit-wise randrange
|
||||
ent_256 = entropy(upper_256)
|
||||
ent_2 = entropy_to_bits(ent_256)
|
||||
rand_num = int(ent_2[:upper_2], base=2) + 1
|
||||
if 0 < rand_num < order:
|
||||
return rand_num
|
||||
|
||||
|
||||
class PRNG:
|
||||
# this returns a callable which, when invoked with an integer N, will
|
||||
# return N pseudorandom bytes. Note: this is a short-term PRNG, meant
|
||||
# primarily for the needs of randrange_from_seed__trytryagain(), which
|
||||
# only needs to run it a few times per seed. It does not provide
|
||||
# protection against state compromise (forward security).
|
||||
def __init__(self, seed):
|
||||
self.generator = self.block_generator(seed)
|
||||
|
||||
def __call__(self, numbytes):
|
||||
a = [next(self.generator) for i in range(numbytes)]
|
||||
|
||||
if PY2: # pragma: no branch
|
||||
return "".join(a)
|
||||
else:
|
||||
return bytes(a)
|
||||
|
||||
def block_generator(self, seed):
|
||||
counter = 0
|
||||
while True:
|
||||
for byte in sha256(
|
||||
("prng-%d-%s" % (counter, seed)).encode()
|
||||
).digest():
|
||||
yield byte
|
||||
counter += 1
|
||||
|
||||
|
||||
def randrange_from_seed__overshoot_modulo(seed, order):
|
||||
# hash the data, then turn the digest into a number in [1,order).
|
||||
#
|
||||
# We use David-Sarah Hopwood's suggestion: turn it into a number that's
|
||||
# sufficiently larger than the group order, then modulo it down to fit.
|
||||
# This should give adequate (but not perfect) uniformity, and simple
|
||||
# code. There are other choices: try-try-again is the main one.
|
||||
base = PRNG(seed)(2 * orderlen(order))
|
||||
number = (int(binascii.hexlify(base), 16) % (order - 1)) + 1
|
||||
assert 1 <= number < order, (1, number, order)
|
||||
return number
|
||||
|
||||
|
||||
def lsb_of_ones(numbits):
|
||||
return (1 << numbits) - 1
|
||||
|
||||
|
||||
def bits_and_bytes(order):
|
||||
bits = int(math.log(order - 1, 2) + 1)
|
||||
bytes = bits // 8
|
||||
extrabits = bits % 8
|
||||
return bits, bytes, extrabits
|
||||
|
||||
|
||||
# the following randrange_from_seed__METHOD() functions take an
|
||||
# arbitrarily-sized secret seed and turn it into a number that obeys the same
|
||||
# range limits as randrange() above. They are meant for deriving consistent
|
||||
# signing keys from a secret rather than generating them randomly, for
|
||||
# example a protocol in which three signing keys are derived from a master
|
||||
# secret. You should use a uniformly-distributed unguessable seed with about
|
||||
# curve.baselen bytes of entropy. To use one, do this:
|
||||
# seed = os.urandom(curve.baselen) # or other starting point
|
||||
# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
|
||||
# sk = SigningKey.from_secret_exponent(secexp, curve)
|
||||
|
||||
|
||||
def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
|
||||
# hash the seed, then turn the digest into a number in [1,order), but
|
||||
# don't worry about trying to uniformly fill the range. This will lose,
|
||||
# on average, four bits of entropy.
|
||||
bits, _bytes, extrabits = bits_and_bytes(order)
|
||||
if extrabits:
|
||||
_bytes += 1
|
||||
base = hashmod(seed).digest()[:_bytes]
|
||||
base = "\x00" * (_bytes - len(base)) + base
|
||||
number = 1 + int(binascii.hexlify(base), 16)
|
||||
assert 1 <= number < order
|
||||
return number
|
||||
|
||||
|
||||
def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
|
||||
# like string_to_randrange_truncate_bytes, but only lose an average of
|
||||
# half a bit
|
||||
bits = int(math.log(order - 1, 2) + 1)
|
||||
maxbytes = (bits + 7) // 8
|
||||
base = hashmod(seed).digest()[:maxbytes]
|
||||
base = "\x00" * (maxbytes - len(base)) + base
|
||||
topbits = 8 * maxbytes - bits
|
||||
if topbits:
|
||||
base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
|
||||
number = 1 + int(binascii.hexlify(base), 16)
|
||||
assert 1 <= number < order
|
||||
return number
|
||||
|
||||
|
||||
def randrange_from_seed__trytryagain(seed, order):
|
||||
# figure out exactly how many bits we need (rounded up to the nearest
|
||||
# bit), so we can reduce the chance of looping to less than 0.5 . This is
|
||||
# specified to feed from a byte-oriented PRNG, and discards the
|
||||
# high-order bits of the first byte as necessary to get the right number
|
||||
# of bits. The average number of loops will range from 1.0 (when
|
||||
# order=2**k-1) to 2.0 (when order=2**k+1).
|
||||
assert order > 1
|
||||
bits, bytes, extrabits = bits_and_bytes(order)
|
||||
generate = PRNG(seed)
|
||||
while True:
|
||||
extrabyte = b("")
|
||||
if extrabits:
|
||||
extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits))
|
||||
guess = string_to_number(extrabyte + generate(bytes)) + 1
|
||||
if 1 <= guess < order:
|
||||
return guess
|
||||
|
||||
|
||||
def number_to_string(num, order):
|
||||
l = orderlen(order)
|
||||
fmt_str = "%0" + str(2 * l) + "x"
|
||||
string = binascii.unhexlify((fmt_str % num).encode())
|
||||
assert len(string) == l, (len(string), l)
|
||||
return string
|
||||
|
||||
|
||||
def number_to_string_crop(num, order):
|
||||
l = orderlen(order)
|
||||
fmt_str = "%0" + str(2 * l) + "x"
|
||||
string = binascii.unhexlify((fmt_str % num).encode())
|
||||
return string[:l]
|
||||
|
||||
|
||||
def string_to_number(string):
|
||||
return int(binascii.hexlify(string), 16)
|
||||
|
||||
|
||||
def string_to_number_fixedlen(string, order):
|
||||
l = orderlen(order)
|
||||
assert len(string) == l, (len(string), l)
|
||||
return int(binascii.hexlify(string), 16)
|
||||
|
||||
|
||||
# these methods are useful for the sigencode= argument to SK.sign() and the
|
||||
# sigdecode= argument to VK.verify(), and control how the signature is packed
|
||||
# or unpacked.
|
||||
|
||||
|
||||
def sigencode_strings(r, s, order):
|
||||
r_str = number_to_string(r, order)
|
||||
s_str = number_to_string(s, order)
|
||||
return (r_str, s_str)
|
||||
|
||||
|
||||
def sigencode_string(r, s, order):
|
||||
"""
|
||||
Encode the signature to raw format (:term:`raw encoding`)
|
||||
|
||||
It's expected that this function will be used as a `sigencode=` parameter
|
||||
in :func:`ecdsa.keys.SigningKey.sign` method.
|
||||
|
||||
:param int r: first parameter of the signature
|
||||
:param int s: second parameter of the signature
|
||||
:param int order: the order of the curve over which the signature was
|
||||
computed
|
||||
|
||||
:return: raw encoding of ECDSA signature
|
||||
:rtype: bytes
|
||||
"""
|
||||
# for any given curve, the size of the signature numbers is
|
||||
# fixed, so just use simple concatenation
|
||||
r_str, s_str = sigencode_strings(r, s, order)
|
||||
return r_str + s_str
|
||||
|
||||
|
||||
def sigencode_der(r, s, order):
|
||||
"""
|
||||
Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`.
|
||||
|
||||
Encodes the signature to the following :term:`ASN.1` structure::
|
||||
|
||||
Ecdsa-Sig-Value ::= SEQUENCE {
|
||||
r INTEGER,
|
||||
s INTEGER
|
||||
}
|
||||
|
||||
It's expected that this function will be used as a `sigencode=` parameter
|
||||
in :func:`ecdsa.keys.SigningKey.sign` method.
|
||||
|
||||
:param int r: first parameter of the signature
|
||||
:param int s: second parameter of the signature
|
||||
:param int order: the order of the curve over which the signature was
|
||||
computed
|
||||
|
||||
:return: DER encoding of ECDSA signature
|
||||
:rtype: bytes
|
||||
"""
|
||||
return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
|
||||
|
||||
|
||||
# canonical versions of sigencode methods
|
||||
# these enforce low S values, by negating the value (modulo the order) if
|
||||
# above order/2 see CECKey::Sign()
|
||||
# https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp#L214
|
||||
def sigencode_strings_canonize(r, s, order):
|
||||
if s > order / 2:
|
||||
s = order - s
|
||||
return sigencode_strings(r, s, order)
|
||||
|
||||
|
||||
def sigencode_string_canonize(r, s, order):
|
||||
if s > order / 2:
|
||||
s = order - s
|
||||
return sigencode_string(r, s, order)
|
||||
|
||||
|
||||
def sigencode_der_canonize(r, s, order):
|
||||
if s > order / 2:
|
||||
s = order - s
|
||||
return sigencode_der(r, s, order)
|
||||
|
||||
|
||||
class MalformedSignature(Exception):
|
||||
"""
|
||||
Raised by decoding functions when the signature is malformed.
|
||||
|
||||
Malformed in this context means that the relevant strings or integers
|
||||
do not match what a signature over provided curve would create. Either
|
||||
because the byte strings have incorrect lengths or because the encoded
|
||||
values are too large.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def sigdecode_string(signature, order):
|
||||
"""
|
||||
Decoder for :term:`raw encoding` of ECDSA signatures.
|
||||
|
||||
raw encoding is a simple concatenation of the two integers that comprise
|
||||
the signature, with each encoded using the same amount of bytes depending
|
||||
on curve size/order.
|
||||
|
||||
It's expected that this function will be used as the `sigdecode=`
|
||||
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
|
||||
|
||||
:param signature: encoded signature
|
||||
:type signature: bytes like object
|
||||
:param order: order of the curve over which the signature was computed
|
||||
:type order: int
|
||||
|
||||
:raises MalformedSignature: when the encoding of the signature is invalid
|
||||
|
||||
:return: tuple with decoded 'r' and 's' values of signature
|
||||
:rtype: tuple of ints
|
||||
"""
|
||||
signature = normalise_bytes(signature)
|
||||
l = orderlen(order)
|
||||
if not len(signature) == 2 * l:
|
||||
raise MalformedSignature(
|
||||
"Invalid length of signature, expected {0} bytes long, "
|
||||
"provided string is {1} bytes long".format(2 * l, len(signature))
|
||||
)
|
||||
r = string_to_number_fixedlen(signature[:l], order)
|
||||
s = string_to_number_fixedlen(signature[l:], order)
|
||||
return r, s
|
||||
|
||||
|
||||
def sigdecode_strings(rs_strings, order):
|
||||
"""
|
||||
Decode the signature from two strings.
|
||||
|
||||
First string needs to be a big endian encoding of 'r', second needs to
|
||||
be a big endian encoding of the 's' parameter of an ECDSA signature.
|
||||
|
||||
It's expected that this function will be used as the `sigdecode=`
|
||||
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
|
||||
|
||||
:param list rs_strings: list of two bytes-like objects, each encoding one
|
||||
parameter of signature
|
||||
:param int order: order of the curve over which the signature was computed
|
||||
|
||||
:raises MalformedSignature: when the encoding of the signature is invalid
|
||||
|
||||
:return: tuple with decoded 'r' and 's' values of signature
|
||||
:rtype: tuple of ints
|
||||
"""
|
||||
if not len(rs_strings) == 2:
|
||||
raise MalformedSignature(
|
||||
"Invalid number of strings provided: {0}, expected 2".format(
|
||||
len(rs_strings)
|
||||
)
|
||||
)
|
||||
(r_str, s_str) = rs_strings
|
||||
r_str = normalise_bytes(r_str)
|
||||
s_str = normalise_bytes(s_str)
|
||||
l = orderlen(order)
|
||||
if not len(r_str) == l:
|
||||
raise MalformedSignature(
|
||||
"Invalid length of first string ('r' parameter), "
|
||||
"expected {0} bytes long, provided string is {1} "
|
||||
"bytes long".format(l, len(r_str))
|
||||
)
|
||||
if not len(s_str) == l:
|
||||
raise MalformedSignature(
|
||||
"Invalid length of second string ('s' parameter), "
|
||||
"expected {0} bytes long, provided string is {1} "
|
||||
"bytes long".format(l, len(s_str))
|
||||
)
|
||||
r = string_to_number_fixedlen(r_str, order)
|
||||
s = string_to_number_fixedlen(s_str, order)
|
||||
return r, s
|
||||
|
||||
|
||||
def sigdecode_der(sig_der, order):
|
||||
"""
|
||||
Decoder for DER format of ECDSA signatures.
|
||||
|
||||
DER format of signature is one that uses the :term:`ASN.1` :term:`DER`
|
||||
rules to encode it as a sequence of two integers::
|
||||
|
||||
Ecdsa-Sig-Value ::= SEQUENCE {
|
||||
r INTEGER,
|
||||
s INTEGER
|
||||
}
|
||||
|
||||
It's expected that this function will be used as as the `sigdecode=`
|
||||
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
|
||||
|
||||
:param sig_der: encoded signature
|
||||
:type sig_der: bytes like object
|
||||
:param order: order of the curve over which the signature was computed
|
||||
:type order: int
|
||||
|
||||
:raises UnexpectedDER: when the encoding of signature is invalid
|
||||
|
||||
:return: tuple with decoded 'r' and 's' values of signature
|
||||
:rtype: tuple of ints
|
||||
"""
|
||||
sig_der = normalise_bytes(sig_der)
|
||||
# return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
|
||||
rs_strings, empty = der.remove_sequence(sig_der)
|
||||
if empty != b"":
|
||||
raise der.UnexpectedDER(
|
||||
"trailing junk after DER sig: %s" % binascii.hexlify(empty)
|
||||
)
|
||||
r, rest = der.remove_integer(rs_strings)
|
||||
s, empty = der.remove_integer(rest)
|
||||
if empty != b"":
|
||||
raise der.UnexpectedDER(
|
||||
"trailing junk after DER numbers: %s" % binascii.hexlify(empty)
|
||||
)
|
||||
return r, s
|
||||
Loading…
Add table
Add a link
Reference in a new issue