mirror of
https://github.com/hypervortex/VH-Bombsquad-Modded-Server-Files
synced 2025-11-07 17:36:08 +00:00
Delete dist directory
This commit is contained in:
parent
2e2c838750
commit
867634cc5c
1779 changed files with 0 additions and 565850 deletions
|
|
@ -1,439 +0,0 @@
|
|||
# This file is dual licensed under the terms of the Apache License, Version
|
||||
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
||||
# for complete details.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import abc
|
||||
import typing
|
||||
from math import gcd
|
||||
|
||||
from cryptography.hazmat.primitives import _serialization, hashes
|
||||
from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
|
||||
from cryptography.hazmat.primitives.asymmetric import utils as asym_utils
|
||||
|
||||
|
||||
class RSAPrivateKey(metaclass=abc.ABCMeta):
|
||||
@abc.abstractmethod
|
||||
def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
|
||||
"""
|
||||
Decrypts the provided ciphertext.
|
||||
"""
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def key_size(self) -> int:
|
||||
"""
|
||||
The bit length of the public modulus.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def public_key(self) -> RSAPublicKey:
|
||||
"""
|
||||
The RSAPublicKey associated with this private key.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def sign(
|
||||
self,
|
||||
data: bytes,
|
||||
padding: AsymmetricPadding,
|
||||
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
|
||||
) -> bytes:
|
||||
"""
|
||||
Signs the data.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def private_numbers(self) -> RSAPrivateNumbers:
|
||||
"""
|
||||
Returns an RSAPrivateNumbers.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def private_bytes(
|
||||
self,
|
||||
encoding: _serialization.Encoding,
|
||||
format: _serialization.PrivateFormat,
|
||||
encryption_algorithm: _serialization.KeySerializationEncryption,
|
||||
) -> bytes:
|
||||
"""
|
||||
Returns the key serialized as bytes.
|
||||
"""
|
||||
|
||||
|
||||
RSAPrivateKeyWithSerialization = RSAPrivateKey
|
||||
|
||||
|
||||
class RSAPublicKey(metaclass=abc.ABCMeta):
|
||||
@abc.abstractmethod
|
||||
def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
|
||||
"""
|
||||
Encrypts the given plaintext.
|
||||
"""
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def key_size(self) -> int:
|
||||
"""
|
||||
The bit length of the public modulus.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def public_numbers(self) -> RSAPublicNumbers:
|
||||
"""
|
||||
Returns an RSAPublicNumbers
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def public_bytes(
|
||||
self,
|
||||
encoding: _serialization.Encoding,
|
||||
format: _serialization.PublicFormat,
|
||||
) -> bytes:
|
||||
"""
|
||||
Returns the key serialized as bytes.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def verify(
|
||||
self,
|
||||
signature: bytes,
|
||||
data: bytes,
|
||||
padding: AsymmetricPadding,
|
||||
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
|
||||
) -> None:
|
||||
"""
|
||||
Verifies the signature of the data.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def recover_data_from_signature(
|
||||
self,
|
||||
signature: bytes,
|
||||
padding: AsymmetricPadding,
|
||||
algorithm: typing.Optional[hashes.HashAlgorithm],
|
||||
) -> bytes:
|
||||
"""
|
||||
Recovers the original data from the signature.
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def __eq__(self, other: object) -> bool:
|
||||
"""
|
||||
Checks equality.
|
||||
"""
|
||||
|
||||
|
||||
RSAPublicKeyWithSerialization = RSAPublicKey
|
||||
|
||||
|
||||
def generate_private_key(
|
||||
public_exponent: int,
|
||||
key_size: int,
|
||||
backend: typing.Any = None,
|
||||
) -> RSAPrivateKey:
|
||||
from cryptography.hazmat.backends.openssl.backend import backend as ossl
|
||||
|
||||
_verify_rsa_parameters(public_exponent, key_size)
|
||||
return ossl.generate_rsa_private_key(public_exponent, key_size)
|
||||
|
||||
|
||||
def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
|
||||
if public_exponent not in (3, 65537):
|
||||
raise ValueError(
|
||||
"public_exponent must be either 3 (for legacy compatibility) or "
|
||||
"65537. Almost everyone should choose 65537 here!"
|
||||
)
|
||||
|
||||
if key_size < 512:
|
||||
raise ValueError("key_size must be at least 512-bits.")
|
||||
|
||||
|
||||
def _check_private_key_components(
|
||||
p: int,
|
||||
q: int,
|
||||
private_exponent: int,
|
||||
dmp1: int,
|
||||
dmq1: int,
|
||||
iqmp: int,
|
||||
public_exponent: int,
|
||||
modulus: int,
|
||||
) -> None:
|
||||
if modulus < 3:
|
||||
raise ValueError("modulus must be >= 3.")
|
||||
|
||||
if p >= modulus:
|
||||
raise ValueError("p must be < modulus.")
|
||||
|
||||
if q >= modulus:
|
||||
raise ValueError("q must be < modulus.")
|
||||
|
||||
if dmp1 >= modulus:
|
||||
raise ValueError("dmp1 must be < modulus.")
|
||||
|
||||
if dmq1 >= modulus:
|
||||
raise ValueError("dmq1 must be < modulus.")
|
||||
|
||||
if iqmp >= modulus:
|
||||
raise ValueError("iqmp must be < modulus.")
|
||||
|
||||
if private_exponent >= modulus:
|
||||
raise ValueError("private_exponent must be < modulus.")
|
||||
|
||||
if public_exponent < 3 or public_exponent >= modulus:
|
||||
raise ValueError("public_exponent must be >= 3 and < modulus.")
|
||||
|
||||
if public_exponent & 1 == 0:
|
||||
raise ValueError("public_exponent must be odd.")
|
||||
|
||||
if dmp1 & 1 == 0:
|
||||
raise ValueError("dmp1 must be odd.")
|
||||
|
||||
if dmq1 & 1 == 0:
|
||||
raise ValueError("dmq1 must be odd.")
|
||||
|
||||
if p * q != modulus:
|
||||
raise ValueError("p*q must equal modulus.")
|
||||
|
||||
|
||||
def _check_public_key_components(e: int, n: int) -> None:
|
||||
if n < 3:
|
||||
raise ValueError("n must be >= 3.")
|
||||
|
||||
if e < 3 or e >= n:
|
||||
raise ValueError("e must be >= 3 and < n.")
|
||||
|
||||
if e & 1 == 0:
|
||||
raise ValueError("e must be odd.")
|
||||
|
||||
|
||||
def _modinv(e: int, m: int) -> int:
|
||||
"""
|
||||
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
|
||||
"""
|
||||
x1, x2 = 1, 0
|
||||
a, b = e, m
|
||||
while b > 0:
|
||||
q, r = divmod(a, b)
|
||||
xn = x1 - q * x2
|
||||
a, b, x1, x2 = b, r, x2, xn
|
||||
return x1 % m
|
||||
|
||||
|
||||
def rsa_crt_iqmp(p: int, q: int) -> int:
|
||||
"""
|
||||
Compute the CRT (q ** -1) % p value from RSA primes p and q.
|
||||
"""
|
||||
return _modinv(q, p)
|
||||
|
||||
|
||||
def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
|
||||
"""
|
||||
Compute the CRT private_exponent % (p - 1) value from the RSA
|
||||
private_exponent (d) and p.
|
||||
"""
|
||||
return private_exponent % (p - 1)
|
||||
|
||||
|
||||
def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
|
||||
"""
|
||||
Compute the CRT private_exponent % (q - 1) value from the RSA
|
||||
private_exponent (d) and q.
|
||||
"""
|
||||
return private_exponent % (q - 1)
|
||||
|
||||
|
||||
# Controls the number of iterations rsa_recover_prime_factors will perform
|
||||
# to obtain the prime factors. Each iteration increments by 2 so the actual
|
||||
# maximum attempts is half this number.
|
||||
_MAX_RECOVERY_ATTEMPTS = 1000
|
||||
|
||||
|
||||
def rsa_recover_prime_factors(
|
||||
n: int, e: int, d: int
|
||||
) -> typing.Tuple[int, int]:
|
||||
"""
|
||||
Compute factors p and q from the private exponent d. We assume that n has
|
||||
no more than two factors. This function is adapted from code in PyCrypto.
|
||||
"""
|
||||
# See 8.2.2(i) in Handbook of Applied Cryptography.
|
||||
ktot = d * e - 1
|
||||
# The quantity d*e-1 is a multiple of phi(n), even,
|
||||
# and can be represented as t*2^s.
|
||||
t = ktot
|
||||
while t % 2 == 0:
|
||||
t = t // 2
|
||||
# Cycle through all multiplicative inverses in Zn.
|
||||
# The algorithm is non-deterministic, but there is a 50% chance
|
||||
# any candidate a leads to successful factoring.
|
||||
# See "Digitalized Signatures and Public Key Functions as Intractable
|
||||
# as Factorization", M. Rabin, 1979
|
||||
spotted = False
|
||||
a = 2
|
||||
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
|
||||
k = t
|
||||
# Cycle through all values a^{t*2^i}=a^k
|
||||
while k < ktot:
|
||||
cand = pow(a, k, n)
|
||||
# Check if a^k is a non-trivial root of unity (mod n)
|
||||
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
|
||||
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
|
||||
# Either of the terms divides n.
|
||||
p = gcd(cand + 1, n)
|
||||
spotted = True
|
||||
break
|
||||
k *= 2
|
||||
# This value was not any good... let's try another!
|
||||
a += 2
|
||||
if not spotted:
|
||||
raise ValueError("Unable to compute factors p and q from exponent d.")
|
||||
# Found !
|
||||
q, r = divmod(n, p)
|
||||
assert r == 0
|
||||
p, q = sorted((p, q), reverse=True)
|
||||
return (p, q)
|
||||
|
||||
|
||||
class RSAPrivateNumbers:
|
||||
def __init__(
|
||||
self,
|
||||
p: int,
|
||||
q: int,
|
||||
d: int,
|
||||
dmp1: int,
|
||||
dmq1: int,
|
||||
iqmp: int,
|
||||
public_numbers: RSAPublicNumbers,
|
||||
):
|
||||
if (
|
||||
not isinstance(p, int)
|
||||
or not isinstance(q, int)
|
||||
or not isinstance(d, int)
|
||||
or not isinstance(dmp1, int)
|
||||
or not isinstance(dmq1, int)
|
||||
or not isinstance(iqmp, int)
|
||||
):
|
||||
raise TypeError(
|
||||
"RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
|
||||
" all be an integers."
|
||||
)
|
||||
|
||||
if not isinstance(public_numbers, RSAPublicNumbers):
|
||||
raise TypeError(
|
||||
"RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
|
||||
" instance."
|
||||
)
|
||||
|
||||
self._p = p
|
||||
self._q = q
|
||||
self._d = d
|
||||
self._dmp1 = dmp1
|
||||
self._dmq1 = dmq1
|
||||
self._iqmp = iqmp
|
||||
self._public_numbers = public_numbers
|
||||
|
||||
@property
|
||||
def p(self) -> int:
|
||||
return self._p
|
||||
|
||||
@property
|
||||
def q(self) -> int:
|
||||
return self._q
|
||||
|
||||
@property
|
||||
def d(self) -> int:
|
||||
return self._d
|
||||
|
||||
@property
|
||||
def dmp1(self) -> int:
|
||||
return self._dmp1
|
||||
|
||||
@property
|
||||
def dmq1(self) -> int:
|
||||
return self._dmq1
|
||||
|
||||
@property
|
||||
def iqmp(self) -> int:
|
||||
return self._iqmp
|
||||
|
||||
@property
|
||||
def public_numbers(self) -> RSAPublicNumbers:
|
||||
return self._public_numbers
|
||||
|
||||
def private_key(
|
||||
self,
|
||||
backend: typing.Any = None,
|
||||
*,
|
||||
unsafe_skip_rsa_key_validation: bool = False,
|
||||
) -> RSAPrivateKey:
|
||||
from cryptography.hazmat.backends.openssl.backend import (
|
||||
backend as ossl,
|
||||
)
|
||||
|
||||
return ossl.load_rsa_private_numbers(
|
||||
self, unsafe_skip_rsa_key_validation
|
||||
)
|
||||
|
||||
def __eq__(self, other: object) -> bool:
|
||||
if not isinstance(other, RSAPrivateNumbers):
|
||||
return NotImplemented
|
||||
|
||||
return (
|
||||
self.p == other.p
|
||||
and self.q == other.q
|
||||
and self.d == other.d
|
||||
and self.dmp1 == other.dmp1
|
||||
and self.dmq1 == other.dmq1
|
||||
and self.iqmp == other.iqmp
|
||||
and self.public_numbers == other.public_numbers
|
||||
)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(
|
||||
(
|
||||
self.p,
|
||||
self.q,
|
||||
self.d,
|
||||
self.dmp1,
|
||||
self.dmq1,
|
||||
self.iqmp,
|
||||
self.public_numbers,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class RSAPublicNumbers:
|
||||
def __init__(self, e: int, n: int):
|
||||
if not isinstance(e, int) or not isinstance(n, int):
|
||||
raise TypeError("RSAPublicNumbers arguments must be integers.")
|
||||
|
||||
self._e = e
|
||||
self._n = n
|
||||
|
||||
@property
|
||||
def e(self) -> int:
|
||||
return self._e
|
||||
|
||||
@property
|
||||
def n(self) -> int:
|
||||
return self._n
|
||||
|
||||
def public_key(self, backend: typing.Any = None) -> RSAPublicKey:
|
||||
from cryptography.hazmat.backends.openssl.backend import (
|
||||
backend as ossl,
|
||||
)
|
||||
|
||||
return ossl.load_rsa_public_numbers(self)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
|
||||
|
||||
def __eq__(self, other: object) -> bool:
|
||||
if not isinstance(other, RSAPublicNumbers):
|
||||
return NotImplemented
|
||||
|
||||
return self.e == other.e and self.n == other.n
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash((self.e, self.n))
|
||||
Loading…
Add table
Add a link
Reference in a new issue