from typing import Any, List import numpy as np from numpy.typing import NDArray from paddleocr import PaddleOCR from PIL import Image from immich_ml.models.base import InferenceModel from immich_ml.models.transforms import decode_cv2 from immich_ml.schemas import OCROutput, ModelTask, ModelType class PaddleOCRecognizer(InferenceModel): depends = [] identity = (ModelType.OCR, ModelTask.OCR) def __init__(self, model_name: str, min_score: float = 0.9, **model_kwargs: Any) -> None: self.min_score = model_kwargs.pop("minScore", min_score) self.orientation_classify_enabled = model_kwargs.pop("orientationClassifyEnabled", True) self.unwarping_enabled = model_kwargs.pop("unwarpingEnabled", True) super().__init__(model_name, **model_kwargs) self._load() self.loaded = True def _load(self) -> PaddleOCR: self.model = PaddleOCR( text_detection_model_name=f"{self.model_name}_det", text_recognition_model_name=f"{self.model_name}_rec", use_doc_orientation_classify=self.orientation_classify_enabled, use_doc_unwarping=self.unwarping_enabled, ) def _predict(self, inputs: NDArray[np.uint8] | bytes | Image.Image, **kwargs: Any) -> List[OCROutput]: inputs = decode_cv2(inputs) results = self.model.predict(inputs) valid_texts_and_scores = [ (text, score, box) for result in results for text, score, box in zip(result['rec_texts'], result['rec_scores'], result['rec_boxes'].tolist()) if score >= self.min_score ] if not valid_texts_and_scores: return [] return [ OCROutput(text=text, confidence=score, boundingBox={"x1": box[0], "y1": box[1], "x2": box[2], "y2": box[3]}) for text, score, box in valid_texts_and_scores ]