use rapidocr

This commit is contained in:
mertalev 2025-06-10 17:34:52 -04:00
parent 08e54ec5c1
commit c59f932bf0
No known key found for this signature in database
GPG key ID: DF6ABC77AAD98C95
10 changed files with 292 additions and 284 deletions

View file

@ -0,0 +1,79 @@
from typing import Any
import numpy as np
from PIL import Image
from rapidocr.ch_ppocr_det import TextDetector as RapidTextDetector
from rapidocr.inference_engine.base import FileInfo, InferSession
from rapidocr.utils import DownloadFile, DownloadFileInput
from rapidocr.utils.typings import EngineType, LangDet, OCRVersion, TaskType
from rapidocr.utils.typings import ModelType as RapidModelType
from immich_ml.config import log
from immich_ml.models.base import InferenceModel
from immich_ml.models.transforms import decode_cv2
from immich_ml.schemas import ModelSession, ModelTask, ModelType
from .schemas import OcrOptions, TextDetectionOutput
class TextDetector(InferenceModel):
depends = []
identity = (ModelType.DETECTION, ModelTask.OCR)
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
super().__init__(model_name, **model_kwargs)
self.max_resolution = 1440
self.min_score = 0.5
self.score_mode = "fast"
self._empty: TextDetectionOutput = {
"resized": np.empty(0, dtype=np.float32),
"boxes": np.empty(0, dtype=np.float32),
"scores": (),
}
def _download(self) -> None:
model_info = InferSession.get_model_url(
FileInfo(
engine_type=EngineType.ONNXRUNTIME,
ocr_version=OCRVersion.PPOCRV5,
task_type=TaskType.DET,
lang_type=LangDet.CH,
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
)
)
download_params = DownloadFileInput(
file_url=model_info["model_dir"],
sha256=model_info["SHA256"],
save_path=self.model_path,
logger=log,
)
DownloadFile.run(download_params)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
self.model = RapidTextDetector(
OcrOptions(
session=session.session,
limit_side_len=self.max_resolution,
limit_type="min",
box_thresh=self.min_score,
score_mode=self.score_mode,
)
)
return session
def configure(self, **kwargs: Any) -> None:
self.max_resolution = kwargs.get("maxResolution", self.max_resolution)
self.min_score = kwargs.get("minScore", self.min_score)
self.score_mode = kwargs.get("scoreMode", self.score_mode)
def _predict(self, inputs: bytes | Image.Image, **kwargs: Any) -> TextDetectionOutput:
results = self.model(decode_cv2(inputs))
if results.boxes is None or results.scores is None or results.img is None:
return self._empty
log.info(f"{results.boxes=}, {results.scores=}")
return {
"resized": results.img,
"boxes": np.array(results.boxes, dtype=np.float32),
"scores": np.array(results.scores, dtype=np.float32),
}

View file

@ -1,51 +0,0 @@
from typing import Any, List
import numpy as np
from numpy.typing import NDArray
from paddleocr import PaddleOCR
from PIL import Image
from immich_ml.models.base import InferenceModel
from immich_ml.models.transforms import decode_cv2
from immich_ml.schemas import OCROutput, ModelTask, ModelType
class PaddleOCRecognizer(InferenceModel):
depends = []
identity = (ModelType.OCR, ModelTask.OCR)
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
self.orientation_classify_enabled = model_kwargs.get("orientationClassifyEnabled", False)
self.unwarping_enabled = model_kwargs.get("unwarpingEnabled", False)
super().__init__(model_name, **model_kwargs)
self._load()
self.loaded = True
def _load(self) -> PaddleOCR:
self.model = PaddleOCR(
text_detection_model_name=f"{self.model_name}_det",
text_recognition_model_name=f"{self.model_name}_rec",
use_doc_orientation_classify=self.orientation_classify_enabled,
use_doc_unwarping=self.unwarping_enabled,
)
def configure(self, **kwargs: Any) -> None:
self.min_detection_score = kwargs.get("minDetectionScore", 0.3)
self.min_detection_box_score = kwargs.get("minDetectionBoxScore", 0.6)
self.min_recognition_score = kwargs.get("minRecognitionScore", 0.0)
def _predict(self, inputs: NDArray[np.uint8] | bytes | Image.Image, **kwargs: Any) -> List[OCROutput]:
inputs = decode_cv2(inputs)
results = self.model.predict(
inputs,
text_det_thresh=self.min_detection_score,
text_det_box_thresh=self.min_detection_box_score,
text_rec_score_thresh=self.min_recognition_score
)
return [
OCROutput(
text=text, confidence=score,
x1=box[0][0], y1=box[0][1], x2=box[1][0], y2=box[1][1],
x3=box[2][0], y3=box[2][1], x4=box[3][0], y4=box[3][1]
)
for result in results
for text, score, box in zip(result['rec_texts'], result['rec_scores'], result['rec_polys'])
]

View file

@ -0,0 +1,115 @@
from typing import Any
import cv2
import numpy as np
from PIL.Image import Image
from rapidocr.ch_ppocr_rec import TextRecInput
from rapidocr.ch_ppocr_rec import TextRecognizer as RapidTextRecognizer
from rapidocr.inference_engine.base import FileInfo, InferSession
from rapidocr.utils import DownloadFile, DownloadFileInput
from rapidocr.utils.typings import EngineType, LangDet, OCRVersion, TaskType
from rapidocr.utils.typings import ModelType as RapidModelType
from immich_ml.config import log, settings
from immich_ml.models.base import InferenceModel
from immich_ml.schemas import ModelSession, ModelTask, ModelType
from .schemas import OcrOptions, TextDetectionOutput, TextRecognitionOutput
class TextRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.OCR)]
identity = (ModelType.RECOGNITION, ModelTask.OCR)
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
self.min_score = model_kwargs.get("minScore", 0.5)
self._empty: TextRecognitionOutput = {
"box": np.empty(0, dtype=np.float32),
"boxScore": [],
"text": [],
"textScore": [],
}
super().__init__(model_name, **model_kwargs)
def _download(self) -> None:
model_info = InferSession.get_model_url(
FileInfo(
engine_type=EngineType.ONNXRUNTIME,
ocr_version=OCRVersion.PPOCRV5,
task_type=TaskType.REC,
lang_type=LangDet.CH,
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
)
)
download_params = DownloadFileInput(
file_url=model_info["model_dir"],
sha256=model_info["SHA256"],
save_path=self.model_path,
logger=log,
)
DownloadFile.run(download_params)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
self.model = RapidTextRecognizer(
OcrOptions(
session=session.session,
rec_batch_num=settings.max_batch_size.text_recognition if settings.max_batch_size is not None else 6,
rec_img_shape=(3, 48, 320),
)
)
return session
def configure(self, **kwargs: Any) -> None:
self.min_score = kwargs.get("minScore", self.min_score)
def _predict(self, _: Image, texts: TextDetectionOutput, **kwargs: Any) -> TextRecognitionOutput:
boxes, resized_img, box_scores = texts["boxes"], texts["resized"], texts["scores"]
if boxes.shape[0] == 0:
return self._empty
rec = self.model(TextRecInput(img=self.get_crop_img_list(resized_img, boxes)))
if rec.txts is None:
return self._empty
height, width = resized_img.shape[0:2]
log.info(f"Image shape: width={width}, height={height}")
boxes[:, :, 0] /= width
boxes[:, :, 1] /= height
text_scores = np.array(rec.scores)
valid_text_score_idx = text_scores > 0.5
valid_score_idx_list = valid_text_score_idx.tolist()
return {
"box": boxes.reshape(-1, 8)[valid_text_score_idx],
"text": [rec.txts[i] for i in range(len(rec.txts)) if valid_score_idx_list[i]],
"boxScore": box_scores[valid_text_score_idx],
"textScore": text_scores[valid_text_score_idx],
}
def get_crop_img_list(self, img: np.ndarray, boxes: np.ndarray) -> list[np.ndarray]:
img_crop_width = np.maximum(
np.linalg.norm(boxes[:, 1] - boxes[:, 0], axis=1), np.linalg.norm(boxes[:, 2] - boxes[:, 3], axis=1)
).astype(np.int32)
img_crop_height = np.maximum(
np.linalg.norm(boxes[:, 0] - boxes[:, 3], axis=1), np.linalg.norm(boxes[:, 1] - boxes[:, 2], axis=1)
).astype(np.int32)
pts_std = np.zeros((img_crop_width.shape[0], 4, 2), dtype=np.float32)
pts_std[:, 1:3, 0] = img_crop_width[:, None]
pts_std[:, 2:4, 1] = img_crop_height[:, None]
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1).tolist()
imgs = []
for box, pts_std, dst_size in zip(list(boxes), list(pts_std), img_crop_sizes):
M = cv2.getPerspectiveTransform(box, pts_std)
dst_img = cv2.warpPerspective(
img,
M,
dst_size,
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC,
)
dst_height, dst_width = dst_img.shape[0:2]
if dst_height * 1.0 / dst_width >= 1.5:
dst_img = np.rot90(dst_img)
imgs.append(dst_img)
return imgs

View file

@ -0,0 +1,26 @@
from typing import Iterable
import numpy as np
import numpy.typing as npt
from rapidocr.utils.typings import EngineType
from typing_extensions import TypedDict
class TextDetectionOutput(TypedDict):
resized: npt.NDArray[np.float32]
boxes: npt.NDArray[np.float32]
scores: Iterable[float]
class TextRecognitionOutput(TypedDict):
box: npt.NDArray[np.float32]
boxScore: Iterable[float]
text: Iterable[str]
textScore: Iterable[float]
# RapidOCR expects engine_type to be an attribute
class OcrOptions(dict):
def __init__(self, **options):
super().__init__(**options)
self.engine_type = EngineType.ONNXRUNTIME