feat: facial recognition (#2180)

This commit is contained in:
Jason Rasmussen 2023-05-17 13:07:17 -04:00 committed by GitHub
parent 115a47d4c6
commit 93863b0629
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
107 changed files with 3943 additions and 133 deletions

View file

@ -1,9 +1,13 @@
import os
import numpy as np
import cv2 as cv
import uvicorn
from insightface.app import FaceAnalysis
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from fastapi import FastAPI
import uvicorn
import os
from pydantic import BaseModel
@ -15,15 +19,6 @@ class ClipRequestBody(BaseModel):
text: str
is_dev = os.getenv('NODE_ENV') == 'development'
server_port = os.getenv('MACHINE_LEARNING_PORT', 3003)
server_host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0')
app = FastAPI()
"""
Model Initialization
"""
classification_model = os.getenv(
'MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
object_model = os.getenv('MACHINE_LEARNING_OBJECT_MODEL', 'hustvl/yolos-tiny')
@ -31,9 +26,15 @@ clip_image_model = os.getenv(
'MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
clip_text_model = os.getenv(
'MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
facial_recognition_model = os.getenv(
'MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL', 'buffalo_l')
cache_folder = os.getenv('MACHINE_LEARNING_CACHE_FOLDER', '/cache')
_model_cache = {}
app = FastAPI()
@app.get("/")
async def root():
@ -73,6 +74,36 @@ def clip_encode_text(payload: ClipRequestBody):
return model.encode(text).tolist()
@app.post("/facial-recognition/detect-faces", status_code=200)
def facial_recognition(payload: MlRequestBody):
model = _get_model(facial_recognition_model, 'facial-recognition')
assetPath = payload.thumbnailPath
img = cv.imread(assetPath)
height, width, _ = img.shape
results = []
faces = model.get(img)
for face in faces:
if face.det_score < 0.7:
continue
x1, y1, x2, y2 = face.bbox
# min face size as percent of original image
# if (x2 - x1) / width < 0.03 or (y2 - y1) / height < 0.05:
# continue
results.append({
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": round(x1),
"y1": round(y1),
"x2": round(x2),
"y2": round(y2),
},
"score": face.det_score.item(),
"embedding": face.normed_embedding.tolist()
})
return results
def run_engine(engine, path):
result = []
predictions = engine(path)
@ -93,12 +124,22 @@ def _get_model(model, task=None):
key = '|'.join([model, str(task)])
if key not in _model_cache:
if task:
_model_cache[key] = pipeline(model=model, task=task)
if task == 'facial-recognition':
face_model = FaceAnalysis(
name=model, root=cache_folder, allowed_modules=["detection", "recognition"])
face_model.prepare(ctx_id=0, det_size=(640, 640))
_model_cache[key] = face_model
else:
_model_cache[key] = pipeline(model=model, task=task)
else:
_model_cache[key] = SentenceTransformer(model)
_model_cache[key] = SentenceTransformer(
model, cache_folder=cache_folder)
return _model_cache[key]
if __name__ == "__main__":
uvicorn.run("main:app", host=server_host,
port=int(server_port), reload=is_dev, workers=1)
host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0')
port = int(os.getenv('MACHINE_LEARNING_PORT', 3003))
is_dev = os.getenv('NODE_ENV') == 'development'
uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)