mirror of
https://github.com/immich-app/immich
synced 2025-11-07 17:27:20 +00:00
chore(ml): installable package (#17153)
* app -> immich_ml * fix test ci * omit file name * add new line * add new line
This commit is contained in:
parent
f7d730eb05
commit
84c35e35d6
31 changed files with 347 additions and 316 deletions
|
|
@ -0,0 +1,92 @@
|
|||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
from insightface.model_zoo import ArcFaceONNX
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from numpy.typing import NDArray
|
||||
from onnx.tools.update_model_dims import update_inputs_outputs_dims
|
||||
from PIL import Image
|
||||
|
||||
from immich_ml.config import log, settings
|
||||
from immich_ml.models.base import InferenceModel
|
||||
from immich_ml.models.transforms import decode_cv2, serialize_np_array
|
||||
from immich_ml.schemas import (
|
||||
FaceDetectionOutput,
|
||||
FacialRecognitionOutput,
|
||||
ModelFormat,
|
||||
ModelSession,
|
||||
ModelTask,
|
||||
ModelType,
|
||||
)
|
||||
|
||||
|
||||
class FaceRecognizer(InferenceModel):
|
||||
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
|
||||
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
|
||||
|
||||
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
|
||||
super().__init__(model_name, **model_kwargs)
|
||||
max_batch_size = settings.max_batch_size.facial_recognition if settings.max_batch_size else None
|
||||
self.batch_size = max_batch_size if max_batch_size else self._batch_size_default
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
session = self._make_session(self.model_path)
|
||||
if (not self.batch_size or self.batch_size > 1) and str(session.get_inputs()[0].shape[0]) != "batch":
|
||||
self._add_batch_axis(self.model_path)
|
||||
session = self._make_session(self.model_path)
|
||||
self.model = ArcFaceONNX(
|
||||
self.model_path_for_format(ModelFormat.ONNX).as_posix(),
|
||||
session=session,
|
||||
)
|
||||
return session
|
||||
|
||||
def _predict(
|
||||
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
|
||||
) -> FacialRecognitionOutput:
|
||||
if faces["boxes"].shape[0] == 0:
|
||||
return []
|
||||
inputs = decode_cv2(inputs)
|
||||
cropped_faces = self._crop(inputs, faces)
|
||||
embeddings = self._predict_batch(cropped_faces)
|
||||
return self.postprocess(faces, embeddings)
|
||||
|
||||
def _predict_batch(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
|
||||
if not self.batch_size or len(cropped_faces) <= self.batch_size:
|
||||
embeddings: NDArray[np.float32] = self.model.get_feat(cropped_faces)
|
||||
return embeddings
|
||||
|
||||
batch_embeddings: list[NDArray[np.float32]] = []
|
||||
for i in range(0, len(cropped_faces), self.batch_size):
|
||||
batch_embeddings.append(self.model.get_feat(cropped_faces[i : i + self.batch_size]))
|
||||
return np.concatenate(batch_embeddings, axis=0)
|
||||
|
||||
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
|
||||
return [
|
||||
{
|
||||
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
|
||||
"embedding": serialize_np_array(embedding),
|
||||
"score": score,
|
||||
}
|
||||
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
|
||||
]
|
||||
|
||||
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
|
||||
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
|
||||
|
||||
def _add_batch_axis(self, model_path: Path) -> None:
|
||||
log.debug(f"Adding batch axis to model {model_path}")
|
||||
proto = onnx.load(model_path)
|
||||
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
|
||||
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
|
||||
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
|
||||
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
|
||||
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
|
||||
onnx.save(updated_proto, model_path)
|
||||
|
||||
@property
|
||||
def _batch_size_default(self) -> int | None:
|
||||
providers = ort.get_available_providers()
|
||||
return None if self.model_format == ModelFormat.ONNX and "OpenVINOExecutionProvider" not in providers else 1
|
||||
Loading…
Add table
Add a link
Reference in a new issue