feat(ml) backend takes image over HTTP (#2783)

* using pydantic BaseSetting

* ML API takes image file as input

* keeping image in memory

* reducing duplicate code

* using bytes instead of UploadFile & other small code improvements

* removed form-multipart, using HTTP body

* format code

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
This commit is contained in:
Zeeshan Khan 2023-06-17 22:49:19 -05:00 committed by GitHub
parent 3e804f16df
commit 34201be74c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 116 additions and 80 deletions

View file

@ -1,21 +1,26 @@
import { DetectFaceResult, IMachineLearningRepository, MachineLearningInput, MACHINE_LEARNING_URL } from '@app/domain';
import { Injectable } from '@nestjs/common';
import axios from 'axios';
import { createReadStream } from 'fs';
const client = axios.create({ baseURL: MACHINE_LEARNING_URL });
@Injectable()
export class MachineLearningRepository implements IMachineLearningRepository {
private post<T>(input: MachineLearningInput, endpoint: string): Promise<T> {
return client.post<T>(endpoint, createReadStream(input.imagePath)).then((res) => res.data);
}
classifyImage(input: MachineLearningInput): Promise<string[]> {
return client.post<string[]>('/image-classifier/tag-image', input).then((res) => res.data);
return this.post<string[]>(input, '/image-classifier/tag-image');
}
detectFaces(input: MachineLearningInput): Promise<DetectFaceResult[]> {
return client.post<DetectFaceResult[]>('/facial-recognition/detect-faces', input).then((res) => res.data);
return this.post<DetectFaceResult[]>(input, '/facial-recognition/detect-faces');
}
encodeImage(input: MachineLearningInput): Promise<number[]> {
return client.post<number[]>('/sentence-transformer/encode-image', input).then((res) => res.data);
return this.post<number[]>(input, '/sentence-transformer/encode-image');
}
encodeText(input: string): Promise<number[]> {