mirror of
https://github.com/immich-app/immich
synced 2025-11-07 17:27:20 +00:00
feat(ml): composable ml (#9973)
* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
This commit is contained in:
parent
7a46f80ddc
commit
2b1b43a7e4
39 changed files with 982 additions and 999 deletions
|
|
@ -1,5 +1,5 @@
|
|||
from enum import Enum
|
||||
from typing import Any, Protocol, TypedDict, TypeGuard
|
||||
from typing import Any, Literal, Protocol, TypedDict, TypeGuard, TypeVar
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
|
@ -28,31 +28,87 @@ class BoundingBox(TypedDict):
|
|||
y2: int
|
||||
|
||||
|
||||
class ModelType(StrEnum):
|
||||
CLIP = "clip"
|
||||
class ModelTask(StrEnum):
|
||||
FACIAL_RECOGNITION = "facial-recognition"
|
||||
SEARCH = "clip"
|
||||
|
||||
|
||||
class ModelRuntime(StrEnum):
|
||||
ONNX = "onnx"
|
||||
class ModelType(StrEnum):
|
||||
DETECTION = "detection"
|
||||
RECOGNITION = "recognition"
|
||||
TEXTUAL = "textual"
|
||||
VISUAL = "visual"
|
||||
|
||||
|
||||
class ModelFormat(StrEnum):
|
||||
ARMNN = "armnn"
|
||||
ONNX = "onnx"
|
||||
|
||||
|
||||
class ModelSource(StrEnum):
|
||||
INSIGHTFACE = "insightface"
|
||||
MCLIP = "mclip"
|
||||
OPENCLIP = "openclip"
|
||||
|
||||
|
||||
ModelIdentity = tuple[ModelType, ModelTask]
|
||||
|
||||
|
||||
class ModelSession(Protocol):
|
||||
def run(
|
||||
self,
|
||||
output_names: list[str] | None,
|
||||
input_feed: dict[str, npt.NDArray[np.float32]] | dict[str, npt.NDArray[np.int32]],
|
||||
run_options: Any = None,
|
||||
) -> list[npt.NDArray[np.float32]]: ...
|
||||
|
||||
|
||||
class HasProfiling(Protocol):
|
||||
profiling: dict[str, float]
|
||||
|
||||
|
||||
class Face(TypedDict):
|
||||
class FaceDetectionOutput(TypedDict):
|
||||
boxes: npt.NDArray[np.float32]
|
||||
scores: npt.NDArray[np.float32]
|
||||
landmarks: npt.NDArray[np.float32]
|
||||
|
||||
|
||||
class DetectedFace(TypedDict):
|
||||
boundingBox: BoundingBox
|
||||
embedding: npt.NDArray[np.float32]
|
||||
imageWidth: int
|
||||
imageHeight: int
|
||||
score: float
|
||||
|
||||
|
||||
FacialRecognitionOutput = list[DetectedFace]
|
||||
|
||||
|
||||
class PipelineEntry(TypedDict):
|
||||
modelName: str
|
||||
options: dict[str, Any]
|
||||
|
||||
|
||||
PipelineRequest = dict[ModelTask, dict[ModelType, PipelineEntry]]
|
||||
|
||||
|
||||
class InferenceEntry(TypedDict):
|
||||
name: str
|
||||
task: ModelTask
|
||||
type: ModelType
|
||||
options: dict[str, Any]
|
||||
|
||||
|
||||
InferenceEntries = tuple[list[InferenceEntry], list[InferenceEntry]]
|
||||
|
||||
|
||||
InferenceResponse = dict[ModelTask | Literal["imageHeight"] | Literal["imageWidth"], Any]
|
||||
|
||||
|
||||
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
|
||||
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
|
||||
|
||||
|
||||
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
|
||||
return isinstance(obj, np.ndarray) and obj.dtype == dtype
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue