mirror of
https://github.com/immich-app/immich
synced 2025-11-14 17:36:12 +00:00
feat: ocr (#18836)
* feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
This commit is contained in:
parent
c666dc6c67
commit
02b29046b3
90 changed files with 3610 additions and 1722 deletions
|
|
@ -3,6 +3,8 @@ from typing import Any
|
|||
from immich_ml.models.base import InferenceModel
|
||||
from immich_ml.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
|
||||
from immich_ml.models.clip.visual import OpenClipVisualEncoder
|
||||
from immich_ml.models.ocr.detection import TextDetector
|
||||
from immich_ml.models.ocr.recognition import TextRecognizer
|
||||
from immich_ml.schemas import ModelSource, ModelTask, ModelType
|
||||
|
||||
from .constants import get_model_source
|
||||
|
|
@ -28,6 +30,12 @@ def get_model_class(model_name: str, model_type: ModelType, model_task: ModelTas
|
|||
case ModelSource.INSIGHTFACE, ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION:
|
||||
return FaceRecognizer
|
||||
|
||||
case ModelSource.PADDLE, ModelType.DETECTION, ModelTask.OCR:
|
||||
return TextDetector
|
||||
|
||||
case ModelSource.PADDLE, ModelType.RECOGNITION, ModelTask.OCR:
|
||||
return TextRecognizer
|
||||
|
||||
case _:
|
||||
raise ValueError(f"Unknown model combination: {source}, {model_type}, {model_task}")
|
||||
|
||||
|
|
|
|||
|
|
@ -38,9 +38,8 @@ class InferenceModel(ABC):
|
|||
|
||||
def download(self) -> None:
|
||||
if not self.cached:
|
||||
log.info(
|
||||
f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'. This may take a while."
|
||||
)
|
||||
model_type = self.model_type.replace("-", " ")
|
||||
log.info(f"Downloading {model_type} model '{self.model_name}' to {self.model_path}. This may take a while.")
|
||||
self._download()
|
||||
|
||||
def load(self) -> None:
|
||||
|
|
@ -58,7 +57,7 @@ class InferenceModel(ABC):
|
|||
self.load()
|
||||
if model_kwargs:
|
||||
self.configure(**model_kwargs)
|
||||
return self._predict(*inputs, **model_kwargs)
|
||||
return self._predict(*inputs)
|
||||
|
||||
@abstractmethod
|
||||
def _predict(self, *inputs: Any, **model_kwargs: Any) -> Any: ...
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ class BaseCLIPTextualEncoder(InferenceModel):
|
|||
depends = []
|
||||
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
|
||||
|
||||
def _predict(self, inputs: str, language: str | None = None, **kwargs: Any) -> str:
|
||||
def _predict(self, inputs: str, language: str | None = None) -> str:
|
||||
tokens = self.tokenize(inputs, language=language)
|
||||
res: NDArray[np.float32] = self.session.run(None, tokens)[0][0]
|
||||
return serialize_np_array(res)
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ class BaseCLIPVisualEncoder(InferenceModel):
|
|||
depends = []
|
||||
identity = (ModelType.VISUAL, ModelTask.SEARCH)
|
||||
|
||||
def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> str:
|
||||
def _predict(self, inputs: Image.Image | bytes) -> str:
|
||||
image = decode_pil(inputs)
|
||||
res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
|
||||
return serialize_np_array(res)
|
||||
|
|
|
|||
|
|
@ -75,6 +75,11 @@ _INSIGHTFACE_MODELS = {
|
|||
}
|
||||
|
||||
|
||||
_PADDLE_MODELS = {
|
||||
"PP-OCRv5_server",
|
||||
"PP-OCRv5_mobile",
|
||||
}
|
||||
|
||||
SUPPORTED_PROVIDERS = [
|
||||
"CUDAExecutionProvider",
|
||||
"ROCMExecutionProvider",
|
||||
|
|
@ -159,4 +164,7 @@ def get_model_source(model_name: str) -> ModelSource | None:
|
|||
if cleaned_name in _OPENCLIP_MODELS:
|
||||
return ModelSource.OPENCLIP
|
||||
|
||||
if cleaned_name in _PADDLE_MODELS:
|
||||
return ModelSource.PADDLE
|
||||
|
||||
return None
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ class FaceDetector(InferenceModel):
|
|||
|
||||
return session
|
||||
|
||||
def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput:
|
||||
def _predict(self, inputs: NDArray[np.uint8] | bytes) -> FaceDetectionOutput:
|
||||
inputs = decode_cv2(inputs)
|
||||
|
||||
bboxes, landmarks = self._detect(inputs)
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ class FaceRecognizer(InferenceModel):
|
|||
return session
|
||||
|
||||
def _predict(
|
||||
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
|
||||
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput
|
||||
) -> FacialRecognitionOutput:
|
||||
if faces["boxes"].shape[0] == 0:
|
||||
return []
|
||||
|
|
|
|||
86
machine-learning/immich_ml/models/ocr/detection.py
Normal file
86
machine-learning/immich_ml/models/ocr/detection.py
Normal file
|
|
@ -0,0 +1,86 @@
|
|||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from rapidocr.ch_ppocr_det import TextDetector as RapidTextDetector
|
||||
from rapidocr.inference_engine.base import FileInfo, InferSession
|
||||
from rapidocr.utils import DownloadFile, DownloadFileInput
|
||||
from rapidocr.utils.typings import EngineType, LangDet, OCRVersion, TaskType
|
||||
from rapidocr.utils.typings import ModelType as RapidModelType
|
||||
|
||||
from immich_ml.config import log
|
||||
from immich_ml.models.base import InferenceModel
|
||||
from immich_ml.models.transforms import decode_cv2
|
||||
from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
|
||||
from immich_ml.sessions.ort import OrtSession
|
||||
|
||||
from .schemas import OcrOptions, TextDetectionOutput
|
||||
|
||||
|
||||
class TextDetector(InferenceModel):
|
||||
depends = []
|
||||
identity = (ModelType.DETECTION, ModelTask.OCR)
|
||||
|
||||
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
|
||||
super().__init__(model_name, **model_kwargs, model_format=ModelFormat.ONNX)
|
||||
self.max_resolution = 736
|
||||
self.min_score = 0.5
|
||||
self.score_mode = "fast"
|
||||
self._empty: TextDetectionOutput = {
|
||||
"image": np.empty(0, dtype=np.float32),
|
||||
"boxes": np.empty(0, dtype=np.float32),
|
||||
"scores": np.empty(0, dtype=np.float32),
|
||||
}
|
||||
|
||||
def _download(self) -> None:
|
||||
model_info = InferSession.get_model_url(
|
||||
FileInfo(
|
||||
engine_type=EngineType.ONNXRUNTIME,
|
||||
ocr_version=OCRVersion.PPOCRV5,
|
||||
task_type=TaskType.DET,
|
||||
lang_type=LangDet.CH,
|
||||
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
|
||||
)
|
||||
)
|
||||
download_params = DownloadFileInput(
|
||||
file_url=model_info["model_dir"],
|
||||
sha256=model_info["SHA256"],
|
||||
save_path=self.model_path,
|
||||
logger=log,
|
||||
)
|
||||
DownloadFile.run(download_params)
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
# TODO: support other runtime sessions
|
||||
session = OrtSession(self.model_path)
|
||||
self.model = RapidTextDetector(
|
||||
OcrOptions(
|
||||
session=session.session,
|
||||
limit_side_len=self.max_resolution,
|
||||
limit_type="min",
|
||||
box_thresh=self.min_score,
|
||||
score_mode=self.score_mode,
|
||||
)
|
||||
)
|
||||
return session
|
||||
|
||||
def _predict(self, inputs: bytes | Image.Image) -> TextDetectionOutput:
|
||||
results = self.model(decode_cv2(inputs))
|
||||
if results.boxes is None or results.scores is None or results.img is None:
|
||||
return self._empty
|
||||
return {
|
||||
"image": results.img,
|
||||
"boxes": np.array(results.boxes, dtype=np.float32),
|
||||
"scores": np.array(results.scores, dtype=np.float32),
|
||||
}
|
||||
|
||||
def configure(self, **kwargs: Any) -> None:
|
||||
if (max_resolution := kwargs.get("maxResolution")) is not None:
|
||||
self.max_resolution = max_resolution
|
||||
self.model.limit_side_len = max_resolution
|
||||
if (min_score := kwargs.get("minScore")) is not None:
|
||||
self.min_score = min_score
|
||||
self.model.postprocess_op.box_thresh = min_score
|
||||
if (score_mode := kwargs.get("scoreMode")) is not None:
|
||||
self.score_mode = score_mode
|
||||
self.model.postprocess_op.score_mode = score_mode
|
||||
117
machine-learning/immich_ml/models/ocr/recognition.py
Normal file
117
machine-learning/immich_ml/models/ocr/recognition.py
Normal file
|
|
@ -0,0 +1,117 @@
|
|||
from typing import Any
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
from PIL.Image import Image
|
||||
from rapidocr.ch_ppocr_rec import TextRecInput
|
||||
from rapidocr.ch_ppocr_rec import TextRecognizer as RapidTextRecognizer
|
||||
from rapidocr.inference_engine.base import FileInfo, InferSession
|
||||
from rapidocr.utils import DownloadFile, DownloadFileInput
|
||||
from rapidocr.utils.typings import EngineType, LangRec, OCRVersion, TaskType
|
||||
from rapidocr.utils.typings import ModelType as RapidModelType
|
||||
|
||||
from immich_ml.config import log, settings
|
||||
from immich_ml.models.base import InferenceModel
|
||||
from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
|
||||
from immich_ml.sessions.ort import OrtSession
|
||||
|
||||
from .schemas import OcrOptions, TextDetectionOutput, TextRecognitionOutput
|
||||
|
||||
|
||||
class TextRecognizer(InferenceModel):
|
||||
depends = [(ModelType.DETECTION, ModelTask.OCR)]
|
||||
identity = (ModelType.RECOGNITION, ModelTask.OCR)
|
||||
|
||||
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
|
||||
self.min_score = model_kwargs.get("minScore", 0.9)
|
||||
self._empty: TextRecognitionOutput = {
|
||||
"box": np.empty(0, dtype=np.float32),
|
||||
"boxScore": np.empty(0, dtype=np.float32),
|
||||
"text": [],
|
||||
"textScore": np.empty(0, dtype=np.float32),
|
||||
}
|
||||
super().__init__(model_name, **model_kwargs, model_format=ModelFormat.ONNX)
|
||||
|
||||
def _download(self) -> None:
|
||||
model_info = InferSession.get_model_url(
|
||||
FileInfo(
|
||||
engine_type=EngineType.ONNXRUNTIME,
|
||||
ocr_version=OCRVersion.PPOCRV5,
|
||||
task_type=TaskType.REC,
|
||||
lang_type=LangRec.CH,
|
||||
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
|
||||
)
|
||||
)
|
||||
download_params = DownloadFileInput(
|
||||
file_url=model_info["model_dir"],
|
||||
sha256=model_info["SHA256"],
|
||||
save_path=self.model_path,
|
||||
logger=log,
|
||||
)
|
||||
DownloadFile.run(download_params)
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
# TODO: support other runtimes
|
||||
session = OrtSession(self.model_path)
|
||||
self.model = RapidTextRecognizer(
|
||||
OcrOptions(
|
||||
session=session.session,
|
||||
rec_batch_num=settings.max_batch_size.text_recognition if settings.max_batch_size is not None else 6,
|
||||
rec_img_shape=(3, 48, 320),
|
||||
)
|
||||
)
|
||||
return session
|
||||
|
||||
def _predict(self, _: Image, texts: TextDetectionOutput) -> TextRecognitionOutput:
|
||||
boxes, img, box_scores = texts["boxes"], texts["image"], texts["scores"]
|
||||
if boxes.shape[0] == 0:
|
||||
return self._empty
|
||||
rec = self.model(TextRecInput(img=self.get_crop_img_list(img, boxes)))
|
||||
if rec.txts is None:
|
||||
return self._empty
|
||||
|
||||
height, width = img.shape[0:2]
|
||||
boxes[:, :, 0] /= width
|
||||
boxes[:, :, 1] /= height
|
||||
|
||||
text_scores = np.array(rec.scores)
|
||||
valid_text_score_idx = text_scores > self.min_score
|
||||
valid_score_idx_list = valid_text_score_idx.tolist()
|
||||
return {
|
||||
"box": boxes.reshape(-1, 8)[valid_text_score_idx].reshape(-1),
|
||||
"text": [rec.txts[i] for i in range(len(rec.txts)) if valid_score_idx_list[i]],
|
||||
"boxScore": box_scores[valid_text_score_idx],
|
||||
"textScore": text_scores[valid_text_score_idx],
|
||||
}
|
||||
|
||||
def get_crop_img_list(self, img: NDArray[np.float32], boxes: NDArray[np.float32]) -> list[NDArray[np.float32]]:
|
||||
img_crop_width = np.maximum(
|
||||
np.linalg.norm(boxes[:, 1] - boxes[:, 0], axis=1), np.linalg.norm(boxes[:, 2] - boxes[:, 3], axis=1)
|
||||
).astype(np.int32)
|
||||
img_crop_height = np.maximum(
|
||||
np.linalg.norm(boxes[:, 0] - boxes[:, 3], axis=1), np.linalg.norm(boxes[:, 1] - boxes[:, 2], axis=1)
|
||||
).astype(np.int32)
|
||||
pts_std = np.zeros((img_crop_width.shape[0], 4, 2), dtype=np.float32)
|
||||
pts_std[:, 1:3, 0] = img_crop_width[:, None]
|
||||
pts_std[:, 2:4, 1] = img_crop_height[:, None]
|
||||
|
||||
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1).tolist()
|
||||
imgs: list[NDArray[np.float32]] = []
|
||||
for box, pts_std, dst_size in zip(list(boxes), list(pts_std), img_crop_sizes):
|
||||
M = cv2.getPerspectiveTransform(box, pts_std)
|
||||
dst_img: NDArray[np.float32] = cv2.warpPerspective(
|
||||
img,
|
||||
M,
|
||||
dst_size,
|
||||
borderMode=cv2.BORDER_REPLICATE,
|
||||
flags=cv2.INTER_CUBIC,
|
||||
) # type: ignore
|
||||
dst_height, dst_width = dst_img.shape[0:2]
|
||||
if dst_height * 1.0 / dst_width >= 1.5:
|
||||
dst_img = np.rot90(dst_img)
|
||||
imgs.append(dst_img)
|
||||
return imgs
|
||||
|
||||
def configure(self, **kwargs: Any) -> None:
|
||||
self.min_score = kwargs.get("minScore", self.min_score)
|
||||
28
machine-learning/immich_ml/models/ocr/schemas.py
Normal file
28
machine-learning/immich_ml/models/ocr/schemas.py
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
from typing import Any, Iterable
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
from rapidocr.utils.typings import EngineType, LangRec
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
|
||||
class TextDetectionOutput(TypedDict):
|
||||
image: npt.NDArray[np.float32]
|
||||
boxes: npt.NDArray[np.float32]
|
||||
scores: npt.NDArray[np.float32]
|
||||
|
||||
|
||||
class TextRecognitionOutput(TypedDict):
|
||||
box: npt.NDArray[np.float32]
|
||||
boxScore: npt.NDArray[np.float32]
|
||||
text: Iterable[str]
|
||||
textScore: npt.NDArray[np.float32]
|
||||
|
||||
|
||||
# RapidOCR expects `engine_type`, `lang_type`, and `font_path` to be attributes
|
||||
class OcrOptions(dict[str, Any]):
|
||||
def __init__(self, **options: Any) -> None:
|
||||
super().__init__(**options)
|
||||
self.engine_type = EngineType.ONNXRUNTIME
|
||||
self.lang_type = LangRec.CH
|
||||
self.font_path = None
|
||||
Loading…
Add table
Add a link
Reference in a new issue