immich/machine-learning/src/main.py

170 lines
4.6 KiB
Python
Raw Normal View History

2023-05-17 13:07:17 -04:00
import os
import numpy as np
import cv2 as cv
import uvicorn
from insightface.app import FaceAnalysis
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from PIL import Image
2023-04-26 05:39:24 -05:00
from fastapi import FastAPI
from pydantic import BaseModel
class MlRequestBody(BaseModel):
thumbnailPath: str
class ClipRequestBody(BaseModel):
text: str
2023-04-26 05:39:24 -05:00
classification_model = os.getenv(
"MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
)
clip_image_model = os.getenv("MACHINE_LEARNING_CLIP_IMAGE_MODEL", "clip-ViT-B-32")
clip_text_model = os.getenv("MACHINE_LEARNING_CLIP_TEXT_MODEL", "clip-ViT-B-32")
2023-05-17 13:07:17 -04:00
facial_recognition_model = os.getenv(
"MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
)
2023-05-17 13:07:17 -04:00
min_face_score = float(os.getenv("MACHINE_LEARNING_MIN_FACE_SCORE", 0.7))
min_tag_score = float(os.getenv("MACHINE_LEARNING_MIN_TAG_SCORE", 0.9))
eager_startup = (
os.getenv("MACHINE_LEARNING_EAGER_STARTUP", "true") == "true"
) # loads all models at startup
cache_folder = os.getenv("MACHINE_LEARNING_CACHE_FOLDER", "/cache")
_model_cache = {}
2023-04-26 05:39:24 -05:00
2023-05-17 13:07:17 -04:00
app = FastAPI()
2023-04-26 05:39:24 -05:00
@app.on_event("startup")
async def startup_event():
models = [
(classification_model, "image-classification"),
(clip_image_model, "clip"),
(clip_text_model, "clip"),
(facial_recognition_model, "facial-recognition"),
]
# Get all models
for model_name, model_type in models:
if eager_startup:
get_cached_model(model_name, model_type)
else:
_get_model(model_name, model_type)
2023-04-26 05:39:24 -05:00
@app.get("/")
async def root():
return {"message": "Immich ML"}
@app.get("/ping")
def ping():
return "pong"
2023-04-26 05:39:24 -05:00
@app.post("/image-classifier/tag-image", status_code=200)
def image_classification(payload: MlRequestBody):
model = get_cached_model(classification_model, "image-classification")
2023-04-26 05:39:24 -05:00
assetPath = payload.thumbnailPath
return run_engine(model, assetPath)
2023-04-26 05:39:24 -05:00
@app.post("/sentence-transformer/encode-image", status_code=200)
def clip_encode_image(payload: MlRequestBody):
model = get_cached_model(clip_image_model, "clip")
2023-04-26 05:39:24 -05:00
assetPath = payload.thumbnailPath
return model.encode(Image.open(assetPath)).tolist()
2023-04-26 05:39:24 -05:00
@app.post("/sentence-transformer/encode-text", status_code=200)
def clip_encode_text(payload: ClipRequestBody):
model = get_cached_model(clip_text_model, "clip")
2023-04-26 05:39:24 -05:00
text = payload.text
return model.encode(text).tolist()
2023-05-17 13:07:17 -04:00
@app.post("/facial-recognition/detect-faces", status_code=200)
def facial_recognition(payload: MlRequestBody):
model = get_cached_model(facial_recognition_model, "facial-recognition")
2023-05-17 13:07:17 -04:00
assetPath = payload.thumbnailPath
img = cv.imread(assetPath)
height, width, _ = img.shape
results = []
faces = model.get(img)
2023-05-17 13:07:17 -04:00
for face in faces:
if face.det_score < min_face_score:
2023-05-17 13:07:17 -04:00
continue
x1, y1, x2, y2 = face.bbox
results.append(
{
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": round(x1),
"y1": round(y1),
"x2": round(x2),
"y2": round(y2),
},
"score": face.det_score.item(),
"embedding": face.normed_embedding.tolist(),
}
)
2023-05-17 13:07:17 -04:00
return results
def run_engine(engine, path):
result = []
predictions = engine(path)
for index, pred in enumerate(predictions):
tags = pred["label"].split(", ")
if pred["score"] > min_tag_score:
result = [*result, *tags]
if len(result) > 1:
result = list(set(result))
return result
def get_cached_model(model, task):
2023-04-26 05:39:24 -05:00
global _model_cache
key = "|".join([model, str(task)])
2023-04-26 05:39:24 -05:00
if key not in _model_cache:
model = _get_model(model, task)
_model_cache[key] = model
2023-04-26 05:39:24 -05:00
return _model_cache[key]
def _get_model(model, task):
match task:
case "facial-recognition":
model = FaceAnalysis(
name=model,
root=cache_folder,
allowed_modules=["detection", "recognition"],
)
model.prepare(ctx_id=0, det_size=(640, 640))
case "clip":
model = SentenceTransformer(model, cache_folder=cache_folder)
case _:
model = pipeline(model=model, task=task)
return model
if __name__ == "__main__":
host = os.getenv("MACHINE_LEARNING_HOST", "0.0.0.0")
port = int(os.getenv("MACHINE_LEARNING_PORT", 3003))
is_dev = os.getenv("NODE_ENV") == "development"
2023-05-17 13:07:17 -04:00
uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)