immich/machine-learning/immich_ml/sessions/ort.py

146 lines
5.9 KiB
Python
Raw Normal View History

2024-06-25 12:00:24 -04:00
from __future__ import annotations
from pathlib import Path
from typing import Any
import numpy as np
import onnxruntime as ort
from numpy.typing import NDArray
from immich_ml.models.constants import SUPPORTED_PROVIDERS
from immich_ml.schemas import SessionNode
2024-06-25 12:00:24 -04:00
from ..config import log, settings
class OrtSession:
feat: ocr (#18836) * feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2025-10-27 22:09:55 +08:00
session: ort.InferenceSession
2024-06-25 12:00:24 -04:00
def __init__(
self,
model_path: Path | str,
providers: list[str] | None = None,
provider_options: list[dict[str, Any]] | None = None,
sess_options: ort.SessionOptions | None = None,
):
self.model_path = Path(model_path)
self.providers = providers if providers is not None else self._providers_default
self.provider_options = provider_options if provider_options is not None else self._provider_options_default
self.sess_options = sess_options if sess_options is not None else self._sess_options_default
self.session = ort.InferenceSession(
self.model_path.as_posix(),
providers=self.providers,
provider_options=self.provider_options,
sess_options=self.sess_options,
)
def get_inputs(self) -> list[SessionNode]:
inputs: list[SessionNode] = self.session.get_inputs()
return inputs
def get_outputs(self) -> list[SessionNode]:
outputs: list[SessionNode] = self.session.get_outputs()
return outputs
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
run_options: Any = None,
) -> list[NDArray[np.float32]]:
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
return outputs
@property
def providers(self) -> list[str]:
return self._providers
@providers.setter
def providers(self, providers: list[str]) -> None:
log.info(f"Setting execution providers to {providers}, in descending order of preference")
self._providers = providers
@property
def _providers_default(self) -> list[str]:
available_providers = set(ort.get_available_providers())
log.debug(f"Available ORT providers: {available_providers}")
if (openvino := "OpenVINOExecutionProvider") in available_providers:
device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
log.debug(f"Available OpenVINO devices: {device_ids}")
gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
if not gpu_devices:
log.warning("No GPU device found in OpenVINO. Falling back to CPU.")
available_providers.remove(openvino)
return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
@property
def provider_options(self) -> list[dict[str, Any]]:
return self._provider_options
@provider_options.setter
def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
log.debug(f"Setting execution provider options to {provider_options}")
self._provider_options = provider_options
@property
def _provider_options_default(self) -> list[dict[str, Any]]:
provider_options = []
2024-06-25 12:00:24 -04:00
for provider in self.providers:
match provider:
case "CPUExecutionProvider":
options = {"arena_extend_strategy": "kSameAsRequested"}
case "CUDAExecutionProvider" | "ROCMExecutionProvider":
options = {"arena_extend_strategy": "kSameAsRequested", "device_id": settings.device_id}
2024-06-25 12:00:24 -04:00
case "OpenVINOExecutionProvider":
options = {
"device_type": f"GPU.{settings.device_id}",
"precision": "FP32",
"cache_dir": (self.model_path.parent / "openvino").as_posix(),
}
case "CoreMLExecutionProvider":
options = {
"ModelFormat": "MLProgram",
"MLComputeUnits": "ALL",
"SpecializationStrategy": "FastPrediction",
"AllowLowPrecisionAccumulationOnGPU": "1",
"ModelCacheDirectory": (self.model_path.parent / "coreml").as_posix(),
}
2024-06-25 12:00:24 -04:00
case _:
options = {}
provider_options.append(options)
return provider_options
2024-06-25 12:00:24 -04:00
@property
def sess_options(self) -> ort.SessionOptions:
return self._sess_options
@sess_options.setter
def sess_options(self, sess_options: ort.SessionOptions) -> None:
log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
self._sess_options = sess_options
@property
def _sess_options_default(self) -> ort.SessionOptions:
sess_options = ort.SessionOptions()
sess_options.enable_cpu_mem_arena = settings.model_arena
2024-06-25 12:00:24 -04:00
# avoid thread contention between models
if settings.model_inter_op_threads > 0:
sess_options.inter_op_num_threads = settings.model_inter_op_threads
# these defaults work well for CPU, but bottleneck GPU
elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
sess_options.inter_op_num_threads = 1
if settings.model_intra_op_threads > 0:
sess_options.intra_op_num_threads = settings.model_intra_op_threads
elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
sess_options.intra_op_num_threads = 2
if sess_options.inter_op_num_threads > 1:
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
return sess_options