immich/machine-learning/immich_ml/models/clip/textual.py

121 lines
4.7 KiB
Python
Raw Normal View History

import json
from abc import abstractmethod
from functools import cached_property
from pathlib import Path
from typing import Any
import numpy as np
from numpy.typing import NDArray
from tokenizers import Encoding, Tokenizer
from immich_ml.config import log
from immich_ml.models.base import InferenceModel
from immich_ml.models.constants import WEBLATE_TO_FLORES200
from immich_ml.models.transforms import clean_text, serialize_np_array
from immich_ml.schemas import ModelSession, ModelTask, ModelType
class BaseCLIPTextualEncoder(InferenceModel):
depends = []
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
feat: ocr (#18836) * feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2025-10-27 22:09:55 +08:00
def _predict(self, inputs: str, language: str | None = None) -> str:
tokens = self.tokenize(inputs, language=language)
res: NDArray[np.float32] = self.session.run(None, tokens)[0][0]
return serialize_np_array(res)
def _load(self) -> ModelSession:
session = super()._load()
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
self.tokenizer = self._load_tokenizer()
tokenizer_kwargs: dict[str, Any] | None = self.text_cfg.get("tokenizer_kwargs")
self.canonicalize = tokenizer_kwargs is not None and tokenizer_kwargs.get("clean") == "canonicalize"
self.is_nllb = self.model_name.startswith("nllb")
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
return session
@abstractmethod
def _load_tokenizer(self) -> Tokenizer:
pass
@abstractmethod
def tokenize(self, text: str, language: str | None = None) -> dict[str, NDArray[np.int32]]:
pass
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def tokenizer_file_path(self) -> Path:
return self.model_dir / "tokenizer.json"
@property
def tokenizer_cfg_path(self) -> Path:
return self.model_dir / "tokenizer_config.json"
@cached_property
def model_cfg(self) -> dict[str, Any]:
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
return model_cfg
@property
def text_cfg(self) -> dict[str, Any]:
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
return text_cfg
@cached_property
def tokenizer_file(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
return tokenizer_file
@cached_property
def tokenizer_cfg(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
return tokenizer_cfg
class OpenClipTextualEncoder(BaseCLIPTextualEncoder):
def _load_tokenizer(self) -> Tokenizer:
context_length: int = self.text_cfg.get("context_length", 77)
pad_token: str = self.tokenizer_cfg["pad_token"]
tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
pad_id: int = tokenizer.token_to_id(pad_token)
tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
tokenizer.enable_truncation(max_length=context_length)
return tokenizer
def tokenize(self, text: str, language: str | None = None) -> dict[str, NDArray[np.int32]]:
text = clean_text(text, canonicalize=self.canonicalize)
if self.is_nllb and language is not None:
flores_code = WEBLATE_TO_FLORES200.get(language)
if flores_code is None:
no_country = language.split("-")[0]
flores_code = WEBLATE_TO_FLORES200.get(no_country)
if flores_code is None:
log.warning(f"Language '{language}' not found, defaulting to 'en'")
flores_code = "eng_Latn"
text = f"{flores_code}{text}"
tokens: Encoding = self.tokenizer.encode(text)
return {"text": np.array([tokens.ids], dtype=np.int32)}
class MClipTextualEncoder(OpenClipTextualEncoder):
def tokenize(self, text: str, language: str | None = None) -> dict[str, NDArray[np.int32]]:
text = clean_text(text, canonicalize=self.canonicalize)
tokens: Encoding = self.tokenizer.encode(text)
return {
"input_ids": np.array([tokens.ids], dtype=np.int32),
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
}